scholarly journals Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection

2020 ◽  
pp. 127742
Author(s):  
Li Guo ◽  
Zhiqian Yao ◽  
Lu Yang ◽  
Hao Zhang ◽  
Yu Qi ◽  
...  
Pneumologie ◽  
2015 ◽  
Vol 69 (07) ◽  
Author(s):  
S Chillappagari ◽  
V Garapati ◽  
P Mahavadi ◽  
O Stehling ◽  
R Lill ◽  
...  
Keyword(s):  

2021 ◽  
Vol 129 (9) ◽  
pp. 093303
Author(s):  
Ganesh Subramanian P. S. ◽  
Ananthanarasimhan J. ◽  
Leelesh P. ◽  
Harsha Rao ◽  
Anand M. Shivapuji ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhuanchang Wu ◽  
Zhaoying Zhang ◽  
Xin Wang ◽  
Jing Zhang ◽  
Caiyue Ren ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (12) ◽  
pp. 6490
Author(s):  
Olga A. Postnikova ◽  
Sheetal Uppal ◽  
Weiliang Huang ◽  
Maureen A. Kane ◽  
Rafael Villasmil ◽  
...  

The SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681–684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome. One of such features is two tandem CGG codons, although the CGG codon is the rarest codon in the SARS-CoV-2 genome. This suggests that the insertion sequence could cause ribosome pausing as the result of these rare codons. Due to population variants, the Nextstrain divergence measure of the CCU codon is extremely large. We cannot exclude that this divergence might affect host immune responses/effectiveness of SARS-CoV-2 vaccines, possibilities awaiting further investigation. Our experimental studies show that the expression level of original RNA sequence “wildtype” spike protein is much lower than for codon-optimized spike protein in all studied cell lines. Interestingly, the original spike sequence produces a higher titer of pseudoviral particles and a higher level of infection. Further mutagenesis experiments suggest that this dual-effect insert, comprised of a combination of overlapping translation pausing and furin sites, has allowed SARS-CoV-2 to infect its new host (human) more readily. This underlines the importance of ribosome pausing to allow efficient regulation of protein expression and also of cotranslational subdomain folding.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Niclas Roxhed ◽  
Annika Bendes ◽  
Matilda Dale ◽  
Cecilia Mattsson ◽  
Leo Hanke ◽  
...  

AbstractSerological testing is essential to curb the consequences of the COVID-19 pandemic. However, most assays are still limited to single analytes and samples collected within healthcare. Thus, we establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS). We analyse DBS collected during spring of 2020 from 878 random and undiagnosed individuals from the population in Stockholm, Sweden, and use classification approaches to estimate an accumulated seroprevalence of 12.5% (95% CI: 10.3%–14.7%). This includes 5.4% of the samples being IgG+IgM+ against several SARS-CoV-2 proteins, as well as 2.1% being IgG−IgM+ and 5.0% being IgG+IgM− for the virus’ S protein. Subjects classified as IgG+ for several SARS-CoV-2 proteins report influenza-like symptoms more frequently than those being IgG+ for only the S protein (OR = 6.1; p < 0.001). Among all seropositive cases, 30% are asymptomatic. Our strategy enables an accurate individual-level and multiplexed assessment of antibodies in home-sampled blood, assisting our understanding about the undiagnosed seroprevalence and diversity of the immune response against the coronavirus.


Sign in / Sign up

Export Citation Format

Share Document