Hetero-structural Mass Transfer Channel Boosts Electrocatalytic Oxygen Reactions of Metallic Catalyst

2021 ◽  
pp. 131140
Author(s):  
Jing Li ◽  
Junli Wu ◽  
Ziyi Xie ◽  
Xinlei Zhang ◽  
Songlei Lv ◽  
...  
2020 ◽  
Author(s):  
Jing Wang ◽  
Liyang Cao ◽  
Yunhai Zhang ◽  
Yongsheng Liu ◽  
Hui Fang ◽  
...  

Abstract In this work, femtosecond laser assisted-chemical vapor infiltration (LA-CVI) was employed to produce C/SiC composites with 1, 3, and 5 rows of mass transfer channels. The effects of laser machining power on the quality of produced holes were investigated. The results showed that the increase in power yielded complete hole structures. The as-obtained C/SiC composites with different mass transfer channels displayed higher densification degrees with flexural strengths reaching 546±15 MPa for row mass transfer channel of 3. The strengthening mechanism of the composites was linked to the increase in densification and formation of “dense band” during LA-CVI process. Multiphysics finite element simulations of the dense band and density gradient of LA-CVI C/SiC composites revealed C/SiC composites with improved densification and lower porosity due to the formation of “dense band” during LA-CVI process. In sum, LA-CVI method looks promising for future preparation of ceramic matrix composites with high densities.


2016 ◽  
Vol 18 (22) ◽  
pp. 6082-6090 ◽  
Author(s):  
Minghui Tang ◽  
Jiang Deng ◽  
Mingming Li ◽  
Xuefeng Li ◽  
Haoran Li ◽  
...  

NHPC can serve as an advanced catalyst support, which is attributed to its convenient mass transfer channel and nitrogen functionalization.


2020 ◽  
Author(s):  
Jing Wang ◽  
Liyang Cao ◽  
Yongsheng Liu ◽  
Yunhai Zhang ◽  
Jie Chen ◽  
...  

Abstract In this work, femtosecond laser assisted-chemical vapor infiltration (LA-CVI) was employed to produce C/SiC composites with 1, 3, and 5 rows of mass transfer channels. The effects of laser machining power on the quality of produced holes were investigated. The results showed that the increase in power yielded complete hole structures. The as-obtained C/SiC composites with different mass transfer channels displayed higher densification degrees with flexural strengths reaching 546±15 MPa for row mass transfer channel of 3. The strengthening mechanism of the composites was linked to the increase in densification and formation of “dense band” during LA-CVI process. Multiphysics finite element simulations of the dense band and density gradient of LA-CVI C/SiC composites revealed C/SiC composites with improved densification and lower porosity due to the formation of “dense band” during LA-CVI process. In sum, LA-CVI method looks promising for future preparation of ceramic matrix composites with high densities.


2020 ◽  
Vol 8 (40) ◽  
pp. 20963-20969 ◽  
Author(s):  
Wei Chen ◽  
Guo-Bo Huang ◽  
Hao Song ◽  
Jian Zhang

An efficient charge transfer channel for improving the photocatalytic water splitting activity and durability of CdS without sacrificial agents.


Sign in / Sign up

Export Citation Format

Share Document