Surface chemical reconstruction of hierarchical hollow inverse-spinel manganese cobalt oxide boosting oxygen evolution reaction

2021 ◽  
pp. 133829
Author(s):  
Chuang Fan ◽  
Xiaodong Wu ◽  
Meng Li ◽  
Xu Wang ◽  
Yu Zhu ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 657
Author(s):  
Geul Han Kim ◽  
Yoo Sei Park ◽  
Juchan Yang ◽  
Myeong Je Jang ◽  
Jaehoon Jeong ◽  
...  

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper–cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper–cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.


2016 ◽  
Vol 163 (9) ◽  
pp. F1124-F1132 ◽  
Author(s):  
Maria A. Abreu-Sepulveda ◽  
Chetan Dhital ◽  
Ashfia Huq ◽  
Ling Li ◽  
Craig A. Bridges ◽  
...  

2021 ◽  
Vol 21 (4) ◽  
pp. 2660-2667
Author(s):  
Abdul Qayoom Mugheri ◽  
Aneela Tahira ◽  
Umair Aftab ◽  
Adeel Liaquat Bhatti ◽  
Ramesh Lal ◽  
...  

Cobalt oxide has been widely investigated among potential transition metal oxides for the electrochemical energy conversion, storage, and water splitting. However, they have inherently low electronic conductivity and high corrosive nature in alkaline media. Herein, we propose a promising and facile approach to improve the conductivity and charge transport of cobalt oxide Co3O4 through chemical coupling with well-dispersed multiwall carbon nanotubes (MWCNTs) during hydrothermal treatment. The morphology of prepared composite material consisting of nanosheets which are anchored on the MWCNTs as confirmed by scanning electron microscopy (SEM). A cubic crystalline system is exhibited by the cobalt oxide as confirmed by the X-ray diffraction study. The Co, O, and C are the only elements present in the composite material. FTIR study has indicated the successful coupling of cobalt oxide with MWCNTs. The chemically coupled cobalt oxide onto the surface of MWCNTs composite is found highly active towards oxygen evolution reaction (OER) with a low onset potential 1.44 V versus RHE, low overpotential 262 mV at 10 mAcm-2 and small Tafel slope 81 mV dec-1. For continuous operation of 40 hours during durability test, no decay in activity was recorded. Electrochemical impedance study further revealed a low charge transfer resistance of 70.64 Ohms for the composite material during the electrochemical reaction and which strongly favored OER kinetics. This work provides a simple, low cost, and smartly designing electrocatalysts via hydrothermal reaction for the catalysis and energy storage applications.


2020 ◽  
Vol 8 (8) ◽  
pp. 4290-4299 ◽  
Author(s):  
Myeong Je Jang ◽  
Juchan Yang ◽  
Jongmin Lee ◽  
Yoo Sei Park ◽  
Jaehoon Jeong ◽  
...  

Cu0.5Co2.5O4 nanoparticles are obtained by changes in the pH and applied as the anode in anion exchange membrane water electrolysis.


2021 ◽  
Vol 582 ◽  
pp. 322-332
Author(s):  
Bappi Paul ◽  
Piyali Bhanja ◽  
Sachin Sharma ◽  
Yusuke Yamauchi ◽  
Zeid A. Alothman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document