scholarly journals The Least Mating Pathway: Synthetically Refactoring a Familiar Signaling System for New Applications

Cell ◽  
2019 ◽  
Vol 177 (3) ◽  
pp. 521-523
Author(s):  
Ronan W. O’Connell ◽  
Caleb J. Bashor
Author(s):  
T. Imura ◽  
S. Maruse ◽  
K. Mihama ◽  
M. Iseki ◽  
M. Hibino ◽  
...  

Ultra high voltage STEM has many inherent technical advantages over CTEM. These advantages include better signal detectability and signal processing capability. It is hoped that it will explore some new applications which were previously not possible. Conventional STEM (including CTEM with STEM attachment), however, has been unable to provide these inherent advantages due to insufficient performance and engineering problems. Recently we have developed a new 1250 kV STEM and completed installation at Nagoya University in Japan. It has been designed to break through conventional engineering limitations and bring about theoretical advantage in practical applications.In the design of this instrument, we exercised maximum care in providing a stable electron probe. A high voltage generator and an accelerator are housed in two separate pressure vessels and they are connected with a high voltage resistor cable.(Fig. 1) This design minimized induction generated from the high voltage generator, which is a high frequency Cockcroft-Walton type, being transmitted to the electron probe.


1982 ◽  
Vol 43 (C7) ◽  
pp. C7-305-C7-308
Author(s):  
H. Ackermann ◽  
B. Bader ◽  
P. Freiländer ◽  
P. Heitjans ◽  
G. Kiese ◽  
...  

Fitoterapia ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 74-75
Author(s):  
O. I. Voloshуn ◽  
◽  
M. M. Stovpyuk ◽  
O. V. Hyndych ◽  
L. O. Voloshina ◽  
...  

Author(s):  
Christian Devereux ◽  
Justin Smith ◽  
Kate Davis ◽  
Kipton Barros ◽  
Roman Zubatyuk ◽  
...  

<p>Machine learning (ML) methods have become powerful, predictive tools in a wide range of applications, such as facial recognition and autonomous vehicles. In the sciences, computational chemists and physicists have been using ML for the prediction of physical phenomena, such as atomistic potential energy surfaces and reaction pathways. Transferable ML potentials, such as ANI-1x, have been developed with the goal of accurately simulating organic molecules containing the chemical elements H, C, N, and O. Here we provide an extension of the ANI-1x model. The new model, dubbed ANI-2x, is trained to three additional chemical elements: S, F, and Cl. Additionally, ANI-2x underwent torsional refinement training to better predict molecular torsion profiles. These new features open a wide range of new applications within organic chemistry and drug development. These seven elements (H, C, N, O, F, Cl, S) make up ~90% of drug like molecules. To show that these additions do not sacrifice accuracy, we have tested this model across a range of organic molecules and applications, including the COMP6 benchmark, dihedral rotations, conformer scoring, and non-bonded interactions. ANI-2x is shown to accurately predict molecular energies compared to DFT with a ~10<sup>6</sup> factor speedup and a negligible slowdown compared to ANI-1x. The resulting model is a valuable tool for drug development that can potentially replace both quantum calculations and classical force fields for myriad applications.</p>


Sign in / Sign up

Export Citation Format

Share Document