scholarly journals A cellular and spatial map of the choroid plexus across brain ventricles and ages

Cell ◽  
2021 ◽  
Author(s):  
Neil Dani ◽  
Rebecca H. Herbst ◽  
Cristin McCabe ◽  
Gilad S. Green ◽  
Karol Kaiser ◽  
...  
2019 ◽  
Author(s):  
Neil Dani ◽  
Rebecca H. Herbst ◽  
Naomi Habib ◽  
Joshua Head ◽  
Danielle Dionne ◽  
...  

AbstractThe choroid plexus (ChP), located in each brain ventricle, produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier, but is under-characterized. Here, we combine single cell RNA-Seq and spatial mapping of RNA and proteins to construct an atlas of each ChP in the developing and adult mouse brain. Each ChP comprises of epithelial, endothelial, mesenchymal, immune, neuronal, and glial cells, with distinct subtypes, differentiation states and anatomical locations. Epithelial, fibroblast, and macrophage populations had ventricle-specific, regionalized gene expression programs across the developing brain. Key cell types are retained in adult, with loss of developmental signatures and maturation of ventricle-specific regionalization in the epithelial cells. Expression of cognate ligand-receptor pairs across cell subtypes suggests substantial cell-cell interactions within the ChP. Our atlas sheds new light on the development and function of the ChP brain barrier system, and will facilitate future studies on its role in brain development, homeostasis and disease.


2020 ◽  
Vol 40 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Tuba Demirci ◽  
Mehmet D. Aydin ◽  
Ozgur Caglar ◽  
Nazan Aydin ◽  
Sevilay Ozmen ◽  
...  

2018 ◽  
Author(s):  
Merit Wildung ◽  
Tilman Uli Esser ◽  
Katie Baker Grausam ◽  
Cornelia Wiedwald ◽  
Larisa Volceanov-Hahn ◽  
...  

AbstractMotile cilia serve vital functions in development, homeostasis and regeneration. We recently demonstrated that TAp73 is an essential transcriptional regulator of respiratory multiciliogenesis. Here, we show that TAp73 is expressed in multiciliated cells (MCCs) of diverse tissues. Analysis of TAp73 mutant animals revealed that TAp73 regulates Foxj1, Rfx2, Rfx3, axonemal dyneins Dnali1 and Dnai1, plays a pivotal role in the generation of MCCs in male and female reproductive ducts, and contributes to fertility. However, the function of MCCs in the brain appears to be preserved despite the loss of TAp73, and robust activity of cilia-related networks is maintained in the absence of TAp73. Notably, TAp73 loss leads to distinct changes in ciliogenic microRNAs: miR34bc expression is reduced, whereas the miR449 cluster is induced in diverse multiciliated epithelia. Among different MCCs, choroid plexus (CP) epithelial cells in the brain display prominent miR449 expression, whereas brain ventricles exhibit significant increase in miR449 levels along with an increase in the activity of ciliogenic E2F4/MCIDAS circuit in TAp73 mutant animals. Conversely, E2F4 induces robust transcriptional response from miR449 genomic regions. To address whether increased miR449 levels in the brain maintain the multiciliogenesis program in the absence of TAp73, we deleted both TAp73 and miR449 in mice. Although loss of miR449 alone led to a mild ciliary defect in the CP, more pronounced ciliary defects and hydrocephalus were observed in the brain lacking both TAp73 and miR449. In contrast, miR449 loss in other MCCs failed to enhance ciliary defects associated with TAp73 loss. Together, our study shows that, in addition to the airways, TAp73 is essential for generation of MCCs in male and female reproductive ducts, whereas miR449 and TAp73 complement each other to support multiciliogenesis and CP development in the brain.


2015 ◽  
Vol 18 (7) ◽  
pp. A857
Author(s):  
T Byambasuren ◽  
A Amgalanbaatar ◽  
E Sundui ◽  
A Dorjkhuu

Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


Sign in / Sign up

Export Citation Format

Share Document