CXCR4 expression in atherosclerotic lesions induced by low shear stress

2008 ◽  
Vol 32 (3) ◽  
pp. S18-S19
Author(s):  
Dang Heng Wei ◽  
Gui Xue Wang ◽  
Yi Ping Xia ◽  
Jian Jun Lei ◽  
Lu Shang Liu ◽  
...  
2021 ◽  
Author(s):  
Shruti Chatterjee ◽  
Marouane Kheloufi ◽  
Stephane M.I Mazlan ◽  
Xavier Loyer ◽  
Timothy A. McKinsey ◽  
...  

Atherosclerotic lesions preferentially develop in arterial areas exposed to low shear stress, where endothelial cells express a pro-inflammatory, apoptotic, and senescent phenotype. Autophagy is a lysosomal mechanism that recycles damaged organelles and protein aggregates to maintain cellular homeostasis. Stimulation of autophagy in high shear stress conditions is an atheroprotective process. Conversely, endothelial cells exposed to atheroprone low shear stress present a defective autophagic flux, which favors a pro-inflammatory phenotype and the formation of atherosclerotic lesions. Since an efficient autophagic flux is dependent on α-tubulin acetylation, which is reduced under low shear stress, we hypothesized that increasing α-tubulin acetylation could restore adequate levels of autophagy in endothelial cells exposed to low shear stress. We found that blocking Histone Deacetylase 6 (HDAC6) activity, either by pharmacological inhibition (Tubastatin-A) or genetic approaches (shHDAC6), raised levels of acetylated α-tubulin, as well as LC3-II/I ratio, LC3 punctae area and autophagic flux in cultured endothelial cells exposed to low shear stress. This effect was associated with a reduced expression of inflammatory markers (Intercellular adhesion molecule-1 (ICAM-1), Vascular cell Adhesion Protein-1 (VCAM-1) and Monocyte Chemoattractant Protein-1 (MCP-1)) in Tumor Necrosis Factor-alpha (TNF-α)-stimulated cells. We observed increased endothelial autophagic flux in the aortic arch of the HDAC6-/-/ApoE-/- mice. Subsequently, atherosclerotic plaque size was significantly reduced in the atheroprone areas of chimeric HDAC6-/-/ApoE-/- mice, transplanted with HDAC6+/+/ApoE-/- bone marrow, when compared to HDAC6+/+/ApoE-/- littermate controls. Taken together, these results indicate that targeting α-tubulin acetylation, via HDAC6-inhibition, may be an interesting strategy to restore endothelial autophagic flux and to promote an atheroprotective endothelial phenotype despite unfavorable shear stress conditions.


1992 ◽  
Vol 114 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Mitsuji Okano ◽  
Yoji Yoshida

Observations on shapes of endothelial cells both in sudanophilic and nonsudanophilic regions at bifurcations of the brachiocephalic (BC) and left subclavian (SA) arteries in hyperlipidemic rabbits were performed under a SEM. The stagnation point of flow and leading edges of flow dividers were nonsudanophilic and covered by round and long fusiform endothelial cells, respectively. The hips of flow dividers of both branchings, proven to be relatively low shear stress regions, by movement of microspheres in steady flow, were sudanophilic and covered by ellipsoidal cells. Similar studies were carried out in normolipidemic rabbits. It might be concluded that lipid deposition in hyperlipidemic rabbits occurs in relatively low shear stress regions, where endothelial cells are functionally activated, rather than in laminar high shear stress regions at the flow divider.


1989 ◽  
Vol 111 (4) ◽  
pp. 311-315 ◽  
Author(s):  
M. Nazemi ◽  
C. Kleinstreuer

The fluid-particle dynamics in a two-dimensonal symmetric branching channel with local occlusions representing a diseased segment of an aortic artery bifurcation has been analyzed. The validated finite element model simulates the trajectories and landing or impact sites of spherical particles for laminar flow in bifurcation channels with generalized wall conditions. Two hypotheses relating critical wall shear stress levels and plaque formation, previously postulated by Kleinstreuer et al. (1988) and Nazemi et al. (1989), have been confirmed. Low shear stress may contribute to the onset of atherosclerotic lesions and areas of critically low and high shear stresses are susceptible to accelerated growth of plaque.


2021 ◽  
Vol 545 ◽  
pp. 20-26
Author(s):  
AFang Li ◽  
LiLan Tan ◽  
ShuLei Zhang ◽  
Jun Tao ◽  
Zuo Wang ◽  
...  

Author(s):  
Alina G. van der Giessen ◽  
Jolanda J. Wentzel ◽  
Frans N. van de Vosse ◽  
Antonius F. van der Steen ◽  
Pim J. de Feyter ◽  
...  

It is generally accepted that early atherosclerosis develops in low shear-stress (SS) regions such as the outer wall of arterial bifurcations and the inner bend of curved vessels (1). However, in clinical practice, it is common to observe atherosclerotic plaques at the flow-divider, or carina, of coronary bifurcations (2). Plaques at the carina are more frequently found in symptomatic patients, and may represent a more advanced stage of atherosclerosis. The carina is located in a region which is exposed to high SS. We hypothesize that if plaques are located in atheroprotective high SS regions, they have grown circumferentially from the atherogenic low SS regions.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120586 ◽  
Author(s):  
Wei-dong Qin ◽  
Shao-hua Mi ◽  
Chen Li ◽  
Gui-xia Wang ◽  
Jian-ning Zhang ◽  
...  

2008 ◽  
Vol 144 (2) ◽  
pp. 409-410
Author(s):  
Lisa R.P. Spiguel ◽  
Amito Chandiwal ◽  
Ralph R. Weichselbaum ◽  
Christopher L. Skelly

Sign in / Sign up

Export Citation Format

Share Document