Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides

2018 ◽  
Vol 44 ◽  
pp. 72-81 ◽  
Author(s):  
Matías A. Bustos ◽  
Ornella Lucchesi ◽  
María C. Ruete ◽  
Claudia N. Tomes
Reproduction ◽  
2011 ◽  
Vol 141 (2) ◽  
pp. 163-171 ◽  
Author(s):  
Ichiro Tanii ◽  
Tadashi Aradate ◽  
Kouhei Matsuda ◽  
Akira Komiya ◽  
Hideki Fuse

The developing acrosome in spermatids contains pituitary adenylate cyclase-activating polypeptide (PACAP). However, the role of the acrosomal PACAP remains unclear because it has not been detected in mature spermatids and sperm. We reinvestigated whether the sperm acrosome contains PACAP. An antiserum produced against PACAP reacted to the anterior acrosome in epididymal sperm fixed under mild conditions, suggesting that PACAP acts on oocytes and/or cumulus cells at the site of fertilization. Immunolabeling and RT-PCR demonstrated the presence of PACAP type I receptor, a PACAP-specific receptor, in postovulatory cumulus cells. To investigate the role of PACAP in fertilization, we pretreated cumulus–oocyte complexes with the polypeptide. At a low concentration of sperm, the fertilization rate was significantly enhanced by PACAP in a dose-dependent manner. Sperm penetration through the oocyte investment, cumulus layer, and zona pellucida was also enhanced by PACAP. The enhancement was probably due to an enhancement in sperm motility and the zona-induced acrosome reaction, which were stimulated by a cumulus cell-releasing factor. Indeed, PACAP treatment increased the secretion of progesterone from the cumulus–oocyte complexes. These results strongly suggest that in response to PACAP, cumulus cells release a soluble factor that probably stimulates sperm motility and the acrosome reaction, thereby promoting fertilization.


2012 ◽  
Vol 1 (1) ◽  
pp. 18
Author(s):  
Amrit Kaur Bansal ◽  
Ranjna Sundhey Cheema ◽  
Vinod Kumar Gandotra

The aim of this paper was to investigate the antioxidant effect of Mn2+ (200 mM) on the sperm capacitation and acrosome reaction of fresh and chilled cattle bull semen. It has been found that Mn2+ supplementation improves (P≤0.05) the motility at 0, 2, 4 and 6 h of incubation. MDA (malondialdehyde), end product of lipid peroxidation, decreases significantly (P≤0.05) with the supplementation of manganese at 0- and 6-hr of incubation both in fresh and chilled semen. Manganese also increases acrosome reaction significantly (P≤0.05) both in fresh and chilled semen at 0, 4 and 6 h of incubation. Therefore, our findings suggest the role of Mn2+supplementation in improving the quality of cattle bull semen by its scavenging property<em> i.e.</em> reduction in the production of reactive oxygen species during its storage at 4°C or incubation at 37°C for capacitation.


2012 ◽  
Vol 14 (6) ◽  
pp. 816-821 ◽  
Author(s):  
Debby Ickowicz ◽  
Maya Finkelstein ◽  
Haim Breitbart

Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 725-735
Author(s):  
Julieta Gabriela Hamze ◽  
María Jiménez-Movilla ◽  
Raquel Romar

The role of specific zona pellucida (ZP) glycoproteins in gamete interaction has not yet been elucidated in many species. A recently developed 3D model based on magnetic sepharose beads (B) conjugated to recombinant ZP glycoproteins (BZP) and cumulus cells (CBZP) allows the study of isolated ZP proteins in gamete recognition studies. The objective of this work was to study the role of porcine ZP2, ZP3 and ZP4 proteins in sperm binding, cumulus cell adhesion and acrosome reaction triggering. ZP protein-bound beads were incubated with fresh ejaculated boar spermatozoa and isolated cumulus cells for 24 h. The number of sperm bound to the beads, the acrosomal shrouds (presence of acrosomal content) on the bead’s surface, and the acrosome integrity (by means of PNA-FITC lectin) in bound and unbound sperm were studied. Finally, in vitro matured porcine oocytes mixed with BZP2 were inseminated in vitro using fresh sperm and fertilisation results evaluated. Over 60% of beads had at least one sperm bound after 2 h of coincubation. ZP2-beads (BZP2) and cumulus-ZP2-bead complexes (CBZP2) reached the highest number of sperm per bead, whereas BZP3 and BZP4 models showed the highest number of unbound reacted sperm cells and acrosomal shrouds. Fertilisation efficiency and monospermy rate increased when oocytes were fertilised in the presence of BZP2. We, therefore, conclude that in pigs, it is mainly ZP2 that is involved in sperm-ZP binding whereas ZP3 and ZP4 induce acrosome reaction. Using magnetic sepharose ZP2-bound beads might be a valuable tool to improve the fertilisation rate in pigs.


Author(s):  
ALLEN M. SPIEGEL ◽  
ROBERT W. DOWNS ◽  
MICHAEL A. LEVINE ◽  
MORTON J. SINGER ◽  
WOLFGANG KRAWIETZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document