A pore water pressure diffusion model to predict formwork pressure exerted by freshly mixed concrete

2017 ◽  
Vol 75 ◽  
pp. 1-9
Author(s):  
Chankyu Park ◽  
Jae Hong Kim ◽  
Seong Ho Han
2014 ◽  
Vol 11 (2) ◽  
pp. 2355-2390
Author(s):  
G. W. Waswa ◽  
S. A. Lorentz

Abstract. Previous studies indicate that most rainfall-triggered shallow landslides are initiated by a spike in rainfall intensity, which does not usually occur at the beginning of a critical storm, within which the slide is triggered, but after several minutes (or hours) of the storm. The critical storm is also usually not positioned at the beginning of a rainfall season, but after several days of antecedent period. Rainfall triggers landslides via rapid increase in pore water pressure, commonly associated with the change in water content. Consequently, many hydrologic pressure wave models assume that rapid pore water pressure responses are as a result of rapid infiltration of rainwater. On the contrary, this paper argues that, based on the above timings of landslide occurrences and the knowledge that infiltration rate decays with the soil wetness, the rapid increase in pore water pressure that triggers shallow landslides is as a result of rapid introduction of additional energy into the tension saturated (or nearly saturated) zone by the intense rainfall at the ground surface, without infiltration. Antecedent and critical precipitations are significant in creating a tension saturated zone, necessary for rapid transmission of the introduced energy from the ground surface to the lower soil horizons during the critical storm. These arguments are supported by a newly proposed one-dimensional diffusion mathematical model, which, when solved for the appropriate boundary conditions, can yield pore water pressure at any time and depth of a tension-saturated soil profile, without infiltration. The newly proposed diffusion model is mathematically similar to Iverson's model (Iverson, 2000), except that the hydraulic diffusivity parameter in the latter is substituted with a newly proposed energy diffusivity coefficient in the former. A combination of the new diffusion model and the infinite slope model can predict the stability of a shallow slope as a result of transient pore water pressure.


Author(s):  
Trần Thanh Nhàn

In order to observe the end of primary consolidation (EOP) of cohesive soils with and without subjecting to cyclic loading, reconstituted specimens of clayey soils at various Atterberg’s limits were used for oedometer test at different loading increments and undrained cyclic shear test followed by drainage with various cyclic shear directions and a wide range of shear strain amplitudes. The pore water pressure and settlement of the soils were measured with time and the time to EOP was then determined by different methods. It is shown from observed results that the time to EOP determined by 3-t method agrees well with the time required for full dissipation of the pore water pressure and being considerably larger than those determined by Log Time method. These observations were then further evaluated in connection with effects of the Atterberg’s limit and the cyclic loading history.


1981 ◽  
Vol 27 (97) ◽  
pp. 503-505 ◽  
Author(s):  
Ian J. Smalley

AbstractRecent investigations have shown that various factors may affect the shear strength of glacial till and that these factors may be involved in the drumlin-forming process. The presence of frozen till in the deforming zone, variation in pore-water pressure in the till, and the occurrence of random patches of dense stony-till texture have been considered. The occurrence of dense stony till may relate to the dilatancy hypothesis and can be considered a likely drumlin-forming factor within the region of critical stress levels. The up-glacier stress level now appears to be the more important, and to provide a sharper division between drumlin-forming and non-drumlin-forming conditions.


2018 ◽  
Vol 35 (2) ◽  
pp. 111
Author(s):  
Kun ZHANG ◽  
Ze ZHANG ◽  
Xiangyang SHI ◽  
Sihai LI ◽  
Donghui XIAO

2016 ◽  
Vol 24 (7) ◽  
pp. 1821-1833 ◽  
Author(s):  
Nuraddeen Muhammad Babangida ◽  
Muhammad Raza Ul Mustafa ◽  
Khamaruzaman Wan Yusuf ◽  
Mohamed Hasnain Isa

Author(s):  
B. M. Minchew ◽  
C. R. Meyer

Glacier surges are quasi-periodic episodes of rapid ice flow that arise from increases in slip rate at the ice–bed interface. The mechanisms that trigger and sustain surges are not well understood. Here, we develop a new model of incipient surge motion for glaciers underlain by sediments to explore how surges may arise from slip instabilities within a thin layer of saturated, deforming subglacial till. Our model represents the evolution of internal friction, porosity and pore water pressure within the till as functions of the rate and history of shear deformation, and couples the till mechanics to a simple ice-flow model. Changes in pore water pressure govern incipient surge motion, with less permeable till facilitating surging because dilation-driven reductions in pore water pressure slow the rate at which till tends towards a new steady state, thereby allowing time for the glacier to thin dynamically. The reduction of overburden (and thus effective) pressure at the bed caused by dynamic thinning of the glacier sustains surge acceleration in our model. The need for changes in both the hydromechanical properties of the till and the thickness of the glacier creates restrictive conditions for surge motion that are consistent with the rarity of surge-type glaciers and their geographical clustering.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 502
Author(s):  
Jinman Kim ◽  
Heuisoo Han ◽  
Yoonhwa Jin

This paper shows the results of a field appliance study of the hydraulic well method to prevent embankment piping, which is proposed by the Japanese Matsuyama River National Highway Office. The large-scale embankment experiment and seepage analysis were conducted to examine the hydraulic well. The experimental procedure is focused on the pore water pressure. The water levels of the hydraulic well were compared with pore water pressure data, which were used to look over the seepage variations. Two different types of large-scale experiments were conducted according to the installation points of hydraulic wells. The seepage velocity results by the experiment were almost similar to those of the analyses. Further, the pore water pressure oriented from the water level variations in the hydraulic well showed similar patterns between the experiment and numerical analysis; however, deeper from the surface, the larger pore water pressure of the numerical analysis was calculated compared to the experimental values. In addition, the piping effect according to the water level and location of the hydraulic well was quantitatively examined for an embankment having a piping guide part. As a result of applying the hydraulic well to the point where piping occurred, the hydraulic well with a 1.0 m water level reduced the seepage velocity by up to 86%. This is because the difference in the water level between the riverside and the protected side is reduced, and it resulted in reducing the seepage pressure. As a result of the theoretical and numerical hydraulic gradient analysis according to the change in the water level of the hydraulic well, the hydraulic gradient decreased linearly according to the water level of the hydraulic well. From the results according to the location of the hydraulic well, installation of it at the point where piping occurred was found to be the most effective. A hydraulic well is a good device for preventing the piping of an embankment if it is installed at the piping point and the proper water level of the hydraulic well is applied.


Sign in / Sign up

Export Citation Format

Share Document