scholarly journals Confronting a refined multiscale estimate for the aging basic creep of concrete with a comprehensive experimental database

2020 ◽  
Vol 136 ◽  
pp. 106163
Author(s):  
F. Lavergne ◽  
J.-F. Barthélémy
Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 243
Author(s):  
Hernandez-Martinez Francisco G. ◽  
Al-Tabbaa Abir ◽  
Medina-Cetina Zenon ◽  
Yousefpour Negin

This paper presents the experimental database and corresponding statistical analysis (Part I), which serves as a basis to perform the corresponding parametric analysis and machine learning modelling (Part II) of a comprehensive study on organic soil strength and stiffness, stabilized via the wet soil mixing method. The experimental database includes unconfined compression tests performed under laboratory-controlled conditions to investigate the impact of soil type, the soil’s organic content, the soil’s initial natural water content, binder type, binder quantity, grout to soil ratio, water to binder ratio, curing time, temperature, curing relative humidity and carbon dioxide content on the stabilized organic specimens’ stiffness and strength. A descriptive statistical analysis complements the description of the experimental database, along with a qualitative study on the stabilization hydration process via scanning electron microscopy images. Results confirmed findings on the use of Portland cement alone and a mix of Portland cement with ground granulated blast furnace slag as suitable binders for soil stabilization. Findings on mixes including lime and magnesium oxide cements demonstrated minimal stabilization. Specimen size affected stiffness, but not the strength for mixes of peat and Portland cement. The experimental database, along with all produced data analyses, are available at the Texas Data Repository as indicated in the Data Availability Statement below, to allow for data reproducibility and promote the use of artificial intelligence and machine learning competing modelling techniques as the ones presented in Part II of this paper.


2021 ◽  
Vol 11 (8) ◽  
pp. 3705
Author(s):  
Jie Zeng ◽  
Panayiotis C. Roussis ◽  
Ahmed Salih Mohammed ◽  
Chrysanthos Maraveas ◽  
Seyed Alireza Fatemi ◽  
...  

This research examines the feasibility of hybridizing boosted Chi-Squared Automatic Interaction Detection (CHAID) with different kernels of support vector machine (SVM) techniques for the prediction of the peak particle velocity (PPV) induced by quarry blasting. To achieve this objective, a boosting-CHAID technique was applied to a big experimental database comprising six input variables. The technique identified four input parameters (distance from blast-face, stemming length, powder factor, and maximum charge per delay) as the most significant parameters affecting the prediction accuracy and utilized them to propose the SVM models with various kernels. The kernel types used in this study include radial basis function, polynomial, sigmoid, and linear. Several criteria, including mean absolute error (MAE), correlation coefficient (R), and gains, were calculated to evaluate the developed models’ accuracy and applicability. In addition, a simple ranking system was used to evaluate the models’ performance systematically. The performance of the R and MAE index of the radial basis function kernel of SVM in training and testing phases, respectively, confirm the high capability of this SVM kernel in predicting PPV values. This study successfully demonstrates that a combination of boosting-CHAID and SVM models can identify and predict with a high level of accuracy the most effective parameters affecting PPV values.


2013 ◽  
Vol 14 (2) ◽  
pp. 124-130 ◽  
Author(s):  
Jean-Louis Tailhan ◽  
Claude Boulay ◽  
Pierre Rossi ◽  
Fabrice Le Maou ◽  
Eric Martin
Keyword(s):  

1983 ◽  
Vol 4 (2P3) ◽  
pp. 1430-1435 ◽  
Author(s):  
W. K. Dagenhart ◽  
W. L. Gardner ◽  
W. L. Stirling ◽  
J. H. Whealton

2010 ◽  
Vol 67 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Sławomir Domagała ◽  
Parthapratim Munshi ◽  
Maqsood Ahmed ◽  
Benoît Guillot ◽  
Christian Jelsch

The multipolar atom model, constructed by transferring the charge-density parameters from an experimental or theoretical database, is considered to be an easy replacement of the widely used independent atom model. The present study on a new crystal structure of quercetin monohydrate [2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one monohydrate], a plant flavonoid, determined by X-ray diffraction, demonstrates that the transferred multipolar atom model approach greatly improves several factors: the accuracy of atomic positions and the magnitudes of atomic displacement parameters, the residual electron densities and the crystallographic figures of merit. The charge-density features, topological analysis and electrostatic interaction energies obtained from the multipole models based on experimental database transfer and periodic quantum mechanical calculations are found to compare well. This quantitative and comparative study shows that in the absence of high-resolution diffraction data, the database transfer approach can be applied to the multipolar electron density features very accurately.


2021 ◽  
Vol 13 (11) ◽  
pp. 6115
Author(s):  
Moon Keun Kim ◽  
Khalid Osman Abdulkadir ◽  
Jiying Liu ◽  
Joon-Ho Choi ◽  
Huiqing Wen

This study explores the combination of photovoltaic (PV) panels with a reflector mounted on a building to improve electricity generation. Globally, PV panels have been widely used as a renewable energy technology. In order to obtain more solar irradiance and improve electricity output, this study presents an advanced strategy of a reflector combining PV panels mounted on a building in Calgary, Canada. Based on an experimental database of solar irradiances, the simulation presents an optimal shape designed and tilt angles of the reflector and consequently improves solar radiation gain and electricity outputs. Polished aluminum is selected as the reflector material, and the shape and angle are designed to minimize the interruption of direct solar radiation. The numerical approach demonstrates the improvement in performance using a PV panel tilted at 30°, 45°, 60°, and 75° and a reflector, tilted at 15.5° or allowed to be tilted flexibly. A reflector tilted at 15.5° can improve solar radiation gains, of the panel, by nearly 5.5–9.2% at lower tilt angles and 14.1–21.1% at higher tilt angles. Furthermore, the flexibly adjusted reflector can improve solar radiation gains on the PV panel, by nearly 12–15.6% at lower tilt angles and 20–26.5% at higher tilt angles. A reflector tilted at 15.5° improves the panel’s output electricity on average by 4–8% with the PV panel tilted at 30° and 45° respectively and 12–19 % with the PV panel tilted at 60° and 75°, annually. Moreover, a reflector that can be flexibly tilted improves electricity output on average by 9–12% with the PV panel tilted at 30° and 45° and 17–23% with the PV panel tilted at 60° and 75°. Therefore, the utilization of a reflector improves the performance of the PV panel while incurring a relatively low cost.


Author(s):  
Latifa Arfaoui ◽  
Amel Samet ◽  
Amna Znaidi

The main purpose of this paper is to study the orthotropic plastic behaviour of the cold-rolled interstitial free steel HC260Y when it is submitted to various loading directions under monotonic tests. The experimental database included tensile tests carried out on specimens (in the as-received condition and after undergoing an annealing heat treatment) cut in different orientations according to the rolling direction. A model was proposed, depending on a plasticity criterion, a hardening law and an evolution law, which takes into account the anisotropy of the material. To validate the proposed identification strategy, a comparison with the experimental results of the planar tension tests, carried out on specimens cut parallel to the rolling direction, was considered. The obtained results allowed the prediction of the behaviour of this material when it is subjected to other solicitations whether simple or compound.


Sign in / Sign up

Export Citation Format

Share Document