Utilising a radial flow, spherical packed-bed reactor for auto thermal steam reforming of methane to achieve a high capacity of H2 production

Author(s):  
Davood Iranshahi ◽  
Parisa Salimi ◽  
Zahra Pourmand ◽  
Samrand Saeidi ◽  
Jiří Jaromír Klemeš
2013 ◽  
Author(s):  
Parham Sadooghi ◽  
Reinhard Rauch

Steam reforming of methane in a packed bed reactor filled with Nickel based catalyst supported on Alumina, (Al2O3) is theoretically and experimentally studied and analyzed. State of the art Finite Element Method software, COMSOL Multiphysics is used to simulate a steady state two dimensional heterogeneous model, coupled with detailed reaction mechanisms modeling surface and gas-phase kinetics that takes into account the diffusion reaction phenomena inside the particles. The simulation results are compared favorably with experimental data. It is shown that strong axial and radial temperature gradients exist near the reactor wall The obtained results are important in design and optimizing of commercial reactors.


Author(s):  
John C Telotte ◽  
Jesse Kern ◽  
Srinivas Palanki

In this paper, the design of a miniaturized methanol reformer is considered that can operate in two different modes to produce sufficient hydrogen for generating a net power of 24 W and 72 W. The reformer is modeled as a radial flow packed bed reactor and the Ergun equation is used to model the pressure drop. Simulation studies are conducted to study the effect of steam to methanol ratio, inlet pressure and reactor temperature on the production of hydrogen. It is shown that a volume of 20 ml is required to produce sufficient hydrogen for generating the necessary power if an inlet pressure of 202 kPa and a steam to methanol ratio of 1.5 is used. A temperature of 500 K is required for the lower power application while a temperature of 550 K is required for the higher power application.


2021 ◽  
Vol 20 (1) ◽  
pp. 03
Author(s):  
D. R. Dessaune ◽  
V. F. Dias ◽  
J. D. Silva

Thermochemical Packed-Bed (TPB) reformer has been substantially studiedin the past years as a promising equipment to investigate thethermochemical conversion of methane (CH4). This work has as mainobjective a theoretical modelling to describe the process variables of SteamReforming of Methane (SRM) method in the TPB reformer. The TPBreformer is filled with β-SiC open-cell foam where the thermochemicalconversion of CH4 is carried out. The model variables describe the specificaims of work and these objectives can be identified from each equation ofthe developed mathematical model. This work has been proposed to studytwo specific aims as (i) the effective thermal conductivity's effect of thesolid phase (λs,eff.) and (ii) molar flows of chemical components. Theendothermic reaction temperature's profiles are notably increased as thenumeral value of λs,eff. is raised. The Steam Reforming of Methane (SRM)method is suggested to improve the Production Rate (PR) of H2 regardingthe PR of CO. As results, the PR of H2 is of 29.48% while the PR of CO isof 2.76%.


2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Payam Parvasi ◽  
Seyyed Mohammad Jokar

In this work, the methanol synthesis on a commercial industrial catalyst in a novel cylindrical radial flow packed-bed reactor is investigated. The adiabatic and nonadiabatic cylindrical radial flow reactors were proposed and modeled in this research. The proposed configuration has been compared with conventional reactor for methanol production. It leads to higher methanol production and lower pressure drop, with the same catalyst consumption. Furthermore, the results show that the nonadiabatic radial flow packed-bed reactor has a higher methanol content compared with the adiabatic one. The improvement in methanol production was studied by optimizing the essential parameters such as inlet temperatures of the feed and cooling water as well as the number of cooling tubes. The nonlinearity and complexity of the reactor models make the traditional optimization methods ineffective and improbable. Therefore, the process was optimized by genetic algorithm (GA) method, which is one of the most powerful methods. The optimum values for the number of cooling tubes, feed and cooling water temperatures were 308, 507.6 K, and 522.43 K, respectively. The optimization results showed that a new reactor design could be proposed to reduce the cost of methanol synthesis.


Sign in / Sign up

Export Citation Format

Share Document