A Novel Reactor Configuration for Industrial Methanol Production From the Synthesis Gas

2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Payam Parvasi ◽  
Seyyed Mohammad Jokar

In this work, the methanol synthesis on a commercial industrial catalyst in a novel cylindrical radial flow packed-bed reactor is investigated. The adiabatic and nonadiabatic cylindrical radial flow reactors were proposed and modeled in this research. The proposed configuration has been compared with conventional reactor for methanol production. It leads to higher methanol production and lower pressure drop, with the same catalyst consumption. Furthermore, the results show that the nonadiabatic radial flow packed-bed reactor has a higher methanol content compared with the adiabatic one. The improvement in methanol production was studied by optimizing the essential parameters such as inlet temperatures of the feed and cooling water as well as the number of cooling tubes. The nonlinearity and complexity of the reactor models make the traditional optimization methods ineffective and improbable. Therefore, the process was optimized by genetic algorithm (GA) method, which is one of the most powerful methods. The optimum values for the number of cooling tubes, feed and cooling water temperatures were 308, 507.6 K, and 522.43 K, respectively. The optimization results showed that a new reactor design could be proposed to reduce the cost of methanol synthesis.

Author(s):  
John C Telotte ◽  
Jesse Kern ◽  
Srinivas Palanki

In this paper, the design of a miniaturized methanol reformer is considered that can operate in two different modes to produce sufficient hydrogen for generating a net power of 24 W and 72 W. The reformer is modeled as a radial flow packed bed reactor and the Ergun equation is used to model the pressure drop. Simulation studies are conducted to study the effect of steam to methanol ratio, inlet pressure and reactor temperature on the production of hydrogen. It is shown that a volume of 20 ml is required to produce sufficient hydrogen for generating the necessary power if an inlet pressure of 202 kPa and a steam to methanol ratio of 1.5 is used. A temperature of 500 K is required for the lower power application while a temperature of 550 K is required for the higher power application.


Author(s):  
William Andrés Mejía Galarza ◽  
Javier Herguido Huerta ◽  
Miguel Alejandro Menéndez Sastre

Methanol is considered to be a potential energy carrier. Currently, its synthesis from CO2 is performed in conventional reactors, although its yield can be improved if a packed bed membrane reactor (PBMR) is used instead. The objective of this work is to select potential PBMRs as an alternative to the conventional ones.


2018 ◽  
Vol 67 ◽  
pp. 03005
Author(s):  
Bayu Sari Adji ◽  
Yuswan Muharam ◽  
Sutrasno Kartohardjono

There are many oil and gas fields in Indonesia which contain high CO2 that need to be treated. The Acid Gas Removal Unit (AGRU) is installed to remove the CO2. The AGRU will release the CO2 gas from the regeneration column. It still contains a high concentration of CO2 (higher than 80%). The accumulation of CO2 emission to the atmosphere will impact the environment. To promote environment-friendly technology, the process can be improved with conversion of CO2 into methanol. It will provide a relatively closed loop of the carbon cycle and as a renewable energy alternative. This study aims to provide packed bed reactor design which can be implemented in the small-scale methanol production plant utilizing high CO2 feed gas. The reactor temperature was varied from 200°C to 250°C and pressure were operated in the range of 40 Bar up to 75 Bar. These variations were used to analyze the effects of methanol production. The simulation results showed that peak methanol production rate was achieved at the temperature around 230°C. As the conclusion, the reactor showed better performance at the higher pressure and higher temperature although the reaction is exothermic including the recycling process can reduce the cost of hydrogen.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 505
Author(s):  
Masahiro Seshimo ◽  
Bo Liu ◽  
Hey Ryeon Lee ◽  
Katsunori Yogo ◽  
Yuichiro Yamaguchi ◽  
...  

We successfully demonstrated the effect of a membrane reactor for methanol synthesis to improve one-pass CO2 conversion. An Si-rich LTA membrane for dehydration from a methanol synthesis reaction field was synthesized by the seed-assisted hydrothermal synthesis method. The H2O permselective performance of the membrane showed 1.5 × 10−6 mol m−2 s−1 Pa−1 as H2O permeance and around 2,000 as selectivity of H2O/MeOH at 473 K. From the results of membrane reactor tests, the CO2 conversion of the membrane reactor was higher than that of the conventional packed-bed reactor under the all of experimental conditions. Especially, at 4 MPa of reaction pressure, the conversion using the membrane reactor was around 60%. In the case of using a packed-bed reactor, the conversion was 20% under the same conditions. In addition, the calculated and experimental conversion were in good agreement in both the case of the membrane reactor and packed-bed reactor.


Author(s):  
Carlos Esteban Aristizabal-Alzate ◽  
Andrés Felipe Vargas-Ramírez ◽  
Pedro Nel Alvarado-Torres

This article aims to simulate an algorithm constructed in MATLAB to represent the catalytic conversion of SYNGAS into methanol in a packed-bed reactor, based on chemical kinetics for a heterogeneous system with a Cu/ZnO/Al2O3 as a catalyst, and complementary math and phenomenological models, as a pressure drop and catalyst deactivation. Model validation is developed, comparing reference results and the results by running the algorithm in MATLAB using a reference SYNGAS composition. Also, the constructed model considers a catalyst deactivation by sintering and pressure drop along the reactor.  Several parameters were evaluated to identify the pro conditions for methyl alcohol production; these parameters include the gasifying agent selection, the biomass and steam ratio effect, and the biomass origin.


1997 ◽  
Vol 83 (5) ◽  
pp. 443-450 ◽  
Author(s):  
Maki Motobu ◽  
Shigeru Matsuo ◽  
Pi-Chao Wang ◽  
Hiroshi Kataoka ◽  
Masatoshi Matsumura

Sign in / Sign up

Export Citation Format

Share Document