scholarly journals NUMERICAL MODELLING OF THE ENDOTHERMIC PROCESS OF THE STEAM REFORMING OF METHANE IN A FIXED BED REFORMER

2021 ◽  
Vol 20 (1) ◽  
pp. 03
Author(s):  
D. R. Dessaune ◽  
V. F. Dias ◽  
J. D. Silva

Thermochemical Packed-Bed (TPB) reformer has been substantially studiedin the past years as a promising equipment to investigate thethermochemical conversion of methane (CH4). This work has as mainobjective a theoretical modelling to describe the process variables of SteamReforming of Methane (SRM) method in the TPB reformer. The TPBreformer is filled with β-SiC open-cell foam where the thermochemicalconversion of CH4 is carried out. The model variables describe the specificaims of work and these objectives can be identified from each equation ofthe developed mathematical model. This work has been proposed to studytwo specific aims as (i) the effective thermal conductivity's effect of thesolid phase (λs,eff.) and (ii) molar flows of chemical components. Theendothermic reaction temperature's profiles are notably increased as thenumeral value of λs,eff. is raised. The Steam Reforming of Methane (SRM)method is suggested to improve the Production Rate (PR) of H2 regardingthe PR of CO. As results, the PR of H2 is of 29.48% while the PR of CO isof 2.76%.

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
João Paulo Fernando de Medeiros ◽  
Vitória da Fonseca Dias ◽  
José Marcelo da Silva ◽  
Jornandes Dias da Silva

Pd-based membrane reformers have been substantially studied in the past as a promising reformer to produce high-purity H2 from thermochemical conversion of methane (CH4). A variety of research approaches have been taken in the experimental and theoretical fields. The main objective of this work is a theoretical modelling to describe the process variables of the Steam Reforming of Methane (SRM) method on the Pd-based membrane reformer. These process variables describe the specific aims of each equation of the mathematical model characterizing the performance from reformer. The simulated results of the mole fractions of components (MFCs) at the outlet of the Fixed Bed Reformer (FBR) and Packed-Bed Membrane Reformer (PBMR) have been validated. When the H2O/CH4 ratio decreases in PBMR, the Endothermic Reaction Temperature (ERT) is notably increased (998.32 K) at the outlet of the PBMR’s reaction zone. On the other hand, when the H2O/CH4 ratio increases in PBMR, the ERT is remarkably decreased (827.83 K) at the outlet of the PBMR’s reaction zone. An increase of the spatial velocity (Ssp) indicates a reduction in the residence time of reactant molecules inside PBMR and, thus, a decrease of the ERT and conversion of CH4. In contrast, a reduction of the Ssp shows an increase of the residence time of reactant molecules within PBMR and, therefore, a rise of the ERT and conversion of CH4. An increase of the H2O/CH4 ratio raises the conversion rate (CR) of CH4 due to the reduction of the coke content on the catalyst particles. Conversely, a reduction of the H2O/CH4 ratio decreases the CR of CH4 owing to the increase of the coke content on the catalyst particles. Contrary to the CR of CH4, the consumption-based yield (CBY) of H2 sharply decreases with the increase of the H2O/CH4 ratio. An increase of the ERT raises the thermochemical energy storage efficiency (ηtese) from 68.96% (ERT = 1023 K), 63.21% (ERT = 973 K), and 48.12% (ERT = 723 K). The chemical energy, sensible heat, and heat loss reached values of 384.96 W, 151.68 W, and 249.73 W at 973 K. The selectivity of H2 presents higher amounts in the gaseous mixture that varies from 60.98 to 73.18 while CH4 showed lower values ranging from 1.41 to 2.06. Our work is limited to the SRM method. In terms of future uses of this method, new works can be undertaken using novel materials (open-cell foams) and the physical-mathematical model (two-dimensional and three-dimensional) to evaluate the concentration polarization inside membrane reactors.


2012 ◽  
Vol 727-728 ◽  
pp. 1249-1255
Author(s):  
Elvia Leal ◽  
Heloysa Martins Carvalho Andrade ◽  
Ana Cristina Figueiredo de Melo Costa

The aim of this work is to evaluate the catalytic performance in steam reforming of methane of the NiAl2O4catalysts prepared by combustion reaction with different urea levels. The catalysts were prepared with urea in the stoichiometric proportion, and with excess of 10% and 20%. The samples were characterized by DRX, textural analysis by nitrogen adsorption, SEM, TPR, and then, catalytically evaluated in the methane reforming reaction. The results showed the presence of NiAl2O4and traces of NiO for all the samples. The increase of the urea content caused an increase in the particle size and a reduction in the surface area, from 171 to 35 m2/g. All the samples presented irregular morphology. The TPR curves showed peaks of reduction of the NiO species, and reduction of nickel present in the NiAl2O4. Regarding the conversion of methane to synthesis gas, it was observed that the increase of the urea content allowed obtaining higher conversion. However, it was also observed a rapid deactivation of these catalysts due to high coke deposition on the active phases surfaces.


2013 ◽  
Author(s):  
Parham Sadooghi ◽  
Reinhard Rauch

Steam reforming of methane in a packed bed reactor filled with Nickel based catalyst supported on Alumina, (Al2O3) is theoretically and experimentally studied and analyzed. State of the art Finite Element Method software, COMSOL Multiphysics is used to simulate a steady state two dimensional heterogeneous model, coupled with detailed reaction mechanisms modeling surface and gas-phase kinetics that takes into account the diffusion reaction phenomena inside the particles. The simulation results are compared favorably with experimental data. It is shown that strong axial and radial temperature gradients exist near the reactor wall The obtained results are important in design and optimizing of commercial reactors.


Sign in / Sign up

Export Citation Format

Share Document