The PZT system (PbTixZr1−xO3, 0≤x≤1.0): High temperature X-ray diffraction studies. Complete x-T phase diagram of real solid solutions (Part 3)

2013 ◽  
Vol 39 (3) ◽  
pp. 2889-2901 ◽  
Author(s):  
I.N. Andryushina ◽  
L.A. Reznichenko ◽  
L.A. Shilkina ◽  
K.P. Andryushin ◽  
S.I. Dudkina
2021 ◽  
pp. 18-22
Author(s):  
I.F. Mehdiyeva ◽  

Phase equilibria in the TlTe–Tl9TmTe6 system were experimentally studied by methods of differential thermal and powder X-ray diffraction analyses. The system was found to be non-quasibinary due to the incongruent nature of both initial components melting, but it is stable below solidus and is characterized by formation limited solid solutions (2 mol%) based on Tl9TmTe6 are revealed in the system


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Christopher Beyer ◽  
Alexander V. Kurnosov ◽  
Tiziana Boffa Ballaran ◽  
Daniel J. Frost

AbstractP–V–T equations of state (EoS) of synthetic garnet solid solutions with ternary grossular–almandine–pyrope compositions relevant to the Earth’s upper mantle have been determined in order to examine whether garnet properties can be accurately interpolated from those of the end-members. Volumes have been measured as a function of pressure using single-crystal X-ray diffraction measurements performed inside a diamond anvil cell. Isothermal bulk moduli and first pressure derivatives were obtained by fitting the P–V data using a third-order Birch–Murnaghan equation of state. Two nominally eclogitic garnets (Prp47Alm19Grs31And3 and Prp53Alm19Grs18And3Sps7) were found to have isothermal bulk moduli (KT0) and pressure derivatives (K′T0) of 170(3) GPa, 4.1 (4) and 173 (2) GPa, 3.8 (5), respectively. KT0 and K′T0 for an almandine-rich garnet (Prp26Alm63Grs6And5) were found to be 175 (3) GPa and 3.7 (7), respectively. High-temperature compression experiments at 703 K and 823 K were carried out on sample Prp47Alm19Grs31And3, resulting in the high-temperature EoS term (∂KT/∂T)P = − 0.025 (6) and a thermal expansion (α0) of 2.86 (4) × 10−5 K−1. The results imply that the bulk moduli of aluminous garnet solid solutions stable at upper mantle conditions can be deduced from the properties of the end-members with minimal uncertainty. We show that the difference in the bulk sound velocity determined for a multicomponent eclogitic garnet composition and obtained for the same composition from the end-member properties is better than 0.5% for pressures and temperatures corresponding to Earth’s upper mantle.


1971 ◽  
Vol 4 (4) ◽  
pp. 293-297 ◽  
Author(s):  
C. J. Toussaint

A crystallographic study of the system Ni2+ 1−2x Ni3+ x Li+ x O has been carried out. The crystal structure of the material in the range 0≤x≤0.4 at room temperature and up to 1000°C has been studied. The principal coefficients of thermal expansion and the phase diagram are given. The structural rhombohedral → face-centred cubic transition temperature of NiO has been determined.


2006 ◽  
Vol 21 (2) ◽  
pp. 320-328 ◽  
Author(s):  
Alexandre Ermoline ◽  
Mirko Schoenitz ◽  
Edward L. Dreizin

Powders of Zr, ZrO2, and ZrN were mixed and pressed to produce samples with different bulk stoichiometries in the ternary Zr–O–N systems. The samples were laser heated above melting, maintained at a high temperature, and quenched. The processed samples were cross-sectioned and studied using scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction. The results pointed to the location of the ternary invariant point Liquid + Gas + ZrO2 + ZrN on the high-temperature portion of the Zr–ZrO2–ZrN phase diagram. The ternary liquidus in the Zr–O–N system was further constrained based on the comparison of the results obtained in this work with composition histories of zirconium particles burning in air reported earlier. Elemental analysis of nitrogen-rich inclusions found in the samples showed the existence of an extended compositional range for ternary solid Zr–O–N solutions. X-ray diffraction analysis of the quenched samples indicated that these solutions are likely to be derived from the ZrN phase. A preliminary outline of the subsolidus ternary Zr–ZrO2–ZrN phase diagram is constructed based on these findings and the interpretations of the well-known binary Zr–O and Zr–N phase diagrams.


Author(s):  
S. E. Kichanov ◽  
D. P. Kozlenko ◽  
J. Wasicki ◽  
A. V. Belushkin ◽  
W. Nawrocik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document