Opto-electronic properties of molybdenum doped indium tin oxide nanostructured thin films prepared via sol–gel spin coating

2013 ◽  
Vol 39 (6) ◽  
pp. 6953-6961 ◽  
Author(s):  
Saeed Mohammadi ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Golobostanfard
2011 ◽  
Vol 343-344 ◽  
pp. 116-123
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Cheng Jye Chu ◽  
Ru Yuan Yang ◽  
Ruei Ming Huang

In this paper, the indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method and then annealed under different temperatures (400, 500 and 550°C) in a mixture atmosphere of 3.75% H2 with 96.25% N2 gases. The microstructure, optical and electrical properties of the prepared films were investigated and discussed. The XRD patterns of the ITO thin films indicated the main peak of the (222) plane and showed a high degree of crystallinity with an increase of the annealing temperature. In addition, due to the pores existing in the prepared films, the optical and electrical properties of the prepared films are degraded through the sol-gel process. Thus, the best transmittance of 70.0 %in the visible wavelength region and the lowest resistivity of about 1.1×10-2 Ω-cm were obtained when the prepared film was annealed at 550°C.


2005 ◽  
Vol 492-493 ◽  
pp. 325-330
Author(s):  
Hyun-Woong Han ◽  
Young Hoon Yun ◽  
Sung Churl Choi

Indium tin oxide (ITO) thin films were deposited on glass substrates via sol-gel spin coating process from a mixed solution of Indium (Ⅲ) acetylacetonate and Tin (Ⅳ) iso-propoxide. Then, ITO thin films were fired at 500°C, and then annealed at 500°C for 30 min with the sequential annealing process; VacuumN2Ar/H2, N2Ar/H2 and Ar/H2 gas. The effects of the different annealing processes on the surface morphologies and sheet resistance of ITO thin films were investigated. Sheet resistance values of ITO thin films treated under VacuumN2Ar/H2, N2Ar/H2 and Ar/H2 annealing process were 1.25 kohm/sq., 3.18 kohm/sq. and 4.92 kohm/sq., respectively. Actually, the sequential atmosphere gases and non-oxidizing gas, which were used in annealing process influenced the microstructural features or surface morphologies of ITO thin films: grain size and surface roughness. Thus, it was presumed that the sequential annealing condition influenced the densification behavior in the microstructural evolution of ITO thin films.


2021 ◽  
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
A Moutcine

Abstract Recently, the rise of two dimensional amorphous nanostructured thin films have ignited a big interest because of their intriguingly isotropic structural and physical properties leading to potential applications in the nano-optoelectronics. However, according to literature, most of optoelectronic properties are investigated on chalcogenides related heterostructures. This has motivated the present work aiming to provide a new platform for the fabrication, examination of the properties and the applications of 2D nanostructured thin films based on epoxy/silicone blend. Thin films of Epoxy/Silicone loaded with nitrogen doped carbon nanotubes (N-CNTs) were prepared by sol-gel method and deposited on Indium Tin Oxide (ITO) glass substrates at room temperature. Further examination of optical properties aimed the investigation of optical pseudo-gap and Urbach energy and enabled the determination of processed films thickness based on Manifacier and Swanepol method. The results indicated that the unloaded thin films have a direct optical transition with a value of 3.61 eV followed by noticeable shift towards narrowing gaps depending on the loading rate. Urbach's energy is 0.19 eV for the unloaded thin films, and varies from 0.43 to 1.33 eV for the loaded thin films with increasing the rate of N-CNTs. It is inversely variable with the optical pseudo-gap. Finally, Epoxy/Silicone loaded with N-CNTs nanocomposites films can be developed as active layers with specific optical characteristics, giving the possibility to be used in electro-optical applications.


Author(s):  
Ashutosh Kumar Dikshit ◽  
Abhishek Kumar Singh ◽  
Kamal . ◽  
Yogendra Kumar Prajapati ◽  
Parthasarathi Chakrabarti

2020 ◽  
Vol 46 (6) ◽  
pp. 8495
Author(s):  
Mrinmoy Misra ◽  
Deuk-Kyu Hwang ◽  
Yoon Cheol Kim ◽  
Jae-Min Myoung ◽  
Tae Il Lee

Sign in / Sign up

Export Citation Format

Share Document