Optimization of wire electrical discharge machining parameters for cutting electrically conductive boron carbide

2016 ◽  
Vol 42 (14) ◽  
pp. 15671-15678 ◽  
Author(s):  
Ayan Pramanick ◽  
Soumya Sarkar ◽  
Partha Pratim Dey ◽  
Probal Kr. Das
Micron ◽  
2021 ◽  
Vol 141 ◽  
pp. 102991
Author(s):  
Ayan Pramanick ◽  
Partha Pratim Dey ◽  
Probal Kr. Das ◽  
Niraj P. Bhukhanwala

2012 ◽  
Vol 576 ◽  
pp. 527-530
Author(s):  
Mohammad Yeakub Ali ◽  
W.Y.H. Liew ◽  
S.A. Gure ◽  
B. Asfana

This paper presents the estimation of kerf width in micro wire electrical discharge machining (micro WEDM) in terms of machining parameters of capacitance and gap voltage. An empirical model is developed by the analysis of variance (ANOVA) of experimental data. Using a wire electrode of 70 µm diameter, a minimum kerf width is found to be 92 µm for the micro WEDM parameters of 0.01 µF capacitance and 90.25 V gap voltage. Around 30% increament of the kerf is found to be high. The analysis also revealed that the capacitance is more influential parameter than gap voltage on kerf width produced by micro WEDM. As the gap voltage determines the breakdown distance and affects the wire vibration, the wire vibration factor is to be considered in the analysis and in formulation of model in future study.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


2011 ◽  
Vol 383-390 ◽  
pp. 6695-6703 ◽  
Author(s):  
Abolfazl Golshan ◽  
Soheil Gohari ◽  
Ayob Amran

In this study, the appropriate input parameters for achieving minimum surface roughness and high material removal rate are selected for wire electrical discharge machining of cold-work steel 2601. Mathematical modeling acquired by experimental result analysis is used to find the relation between input parameters including electrical current, gap voltage, open-circuit voltage and pulse-off time and output parameters. Subsequently, with exploitation of variance analysis, importance and effective percentages of each parameter are studied. The combination of optimum machining parameters is acquired using the analysis of ratios of signal-to-noise. Finally, according to multiple-objective optimization, outputs acquired from Non-dominated Sorting Genetic Algorithm led in achieving appropriate models. The optimization results showed suggested method has a high performance in problem solving.


Mechanik ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. 220-222
Author(s):  
Rafał Świercz ◽  
Dorota Oniszczuk-Świercz ◽  
Rafał Nowicki

This article presents the influence of process parameters of wire electrical discharge machining using coated brass on the surface roughness and material removal rate of Inconel 718. Studies were conducted by design of the experiment. Based on the survey developed mathematical models which allow selecting the most favorable machining parameters depending on the desired process performance and quality features of the surface texture.


Sign in / Sign up

Export Citation Format

Share Document