Fabrication of superhydrophobic surfaces with tunable water droplet adhesion force by a two-step method

2019 ◽  
Vol 45 (11) ◽  
pp. 14389-14396 ◽  
Author(s):  
Zhenzhen Lu ◽  
Yang He
RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53525-53531 ◽  
Author(s):  
Yongtao Wang ◽  
Huige Yang ◽  
Hongzhi Liu ◽  
Li Zhang ◽  
Ruixia Duan ◽  
...  

Construction of superhydrophobic surfaces with tunable adhesion force has attracted considerable attention in past decades.


RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 297-308
Author(s):  
Zhi Chen ◽  
Yongbo Hu ◽  
Xu He ◽  
Yihao Xu ◽  
Xuesong Liu ◽  
...  

We investigated a one-step method for calcium superhydrophobic surface preparation and researched the formation process of loose, flower-like microstructures. Also, we found that the pressing force strongly impacts the dynamics of water droplets.


2019 ◽  
Vol 813 ◽  
pp. 37-42
Author(s):  
Amani Khaskhoussi ◽  
Luigi Calabrese ◽  
Edoardo Proverbio

Three different methods were used to obtain nature-inspired superhydrophobic surfaces on aluminum alloys: short-term treatment with boiling water, HF/HCl and HNO3/HCl concentrated solution etching. Afterwards a thin octadecylsilane film was deposited on all pre-treated surfaces. The surface morphology analysis showed that each method allow to obtain a specific dual nano/micro-structure. The corresponding water contact angles ranged from 160° to nearly 180°. The adhesion force between the water droplets and superhydrophobic surfaces were evaluated. The specimen etched with HF/HCl acid mixture solution showed the lowest adhesion. However, the boiling water treatment sample was characterized by the highest adhesion. Furthermore, the relationship between hydrophobic behavior and surface morphology was discussed compressively. In addition, the electrochemical measurements show that the different superhydrophobic surfaces have an excellent anti-corrosion performance evidencing promising results suitable to obtain large-scale nature-inspired superhydrophobic surfaces for several industrial applications.


Langmuir ◽  
2012 ◽  
Vol 28 (6) ◽  
pp. 3138-3145 ◽  
Author(s):  
Hannu Teisala ◽  
Mikko Tuominen ◽  
Mikko Aromaa ◽  
Milena Stepien ◽  
Jyrki M. Mäkelä ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Matilda Backholm ◽  
Daniel Molpeceres ◽  
Maja Vuckovac ◽  
Heikki Nurmi ◽  
Matti J. Hokkanen ◽  
...  

Abstract Superhydrophobicity is a remarkable surface property found in nature and mimicked in many engineering applications, including anti-wetting, anti-fogging, and anti-fouling coatings. As synthetic superhydrophobic coatings approach the extreme non-wetting limit, quantification of their slipperiness becomes increasingly challenging: although contact angle goniometry remains widely used as the gold standard method, it has proven insufficient. Here, micropipette force sensors are used to directly measure the friction force of water droplets moving on super-slippery superhydrophobic surfaces that cannot be quantified with contact angle goniometry. Superhydrophobic etched silicon surfaces with tunable slipperiness are investigated as model samples. Micropipette force sensors render up to three orders of magnitude better force sensitivity than using the indirect contact angle goniometry approach. We directly measure a friction force as low as 7 ± 4 nN for a millimetric water droplet moving on the most slippery surface. Finally, we combine micropipette force sensors with particle image velocimetry and reveal purely rolling water droplets on superhydrophobic surfaces.


2013 ◽  
Vol 64 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Daisuke ISHII ◽  
Akihito TAKAHASHI ◽  
Masatsugu SHIMOMURA

Sign in / Sign up

Export Citation Format

Share Document