Low-temperature fabrication of calcium deficient hydroxyapatite bone scaffold by optimization of 3D printing conditions

Author(s):  
Naren Raja ◽  
Aram Sung ◽  
Honghyun Park ◽  
Hui-suk Yun
2021 ◽  
Vol 123 ◽  
pp. 111963
Author(s):  
Hairui Suo ◽  
Jiaying Zhang ◽  
Mingen Xu ◽  
Ling Wang

Author(s):  
Halil Tetik ◽  
Dong Lin

Abstract 3D freeze printing is a hybrid manufacturing method composed of freeze casting and inkjet-based printing. It is a facile method to fabricate lightweight, porous, and functional structures. Freeze casting is a well-known method for fabricating porous bodies and is capable of manipulating the micro-structure of the resulting product. Freeze casting simply involves solidification of a liquid suspension using low temperature and sublimation of the solvent using low temperature and pressure. After the sublimation of the solvent crystals, we obtain a porous structure where the pores are a replica of solvent crystal. Making use of the temperature gradient, as seen in unidirectional and bidirectional freeze casting, during the solidification with low temperature values, the solvent crystals grow along the temperature gradient. Furthermore, by manipulating the freezing kinetics during solidification, we can have a control on the average pore size distribution. For instance, when lower freezing temperatures result in finer pores with higher amount, higher freezing temperatures result in coarser pores with less amount. Also, the use of some additives inside the suspension leads to changes in the morphology of the solvent crystals as well as the resulting pores. However, the macro-structure of the fabricated body is highly dependent on the mold used during the process. In order to eliminate the dependency on the mold during the freeze casting process, our group recently combined this technique with inkjet-based 3D printing. With inkjet-based 3D printing, we fabricated uniform lines from single droplets, and complex 3D shapes from the lines. This provided us the ability of tailoring the macro structure of the final product without any dependency on a mold as seen in freeze casting. As a result of the 3D freeze printing process, we achieved fabricating lightweight, porous, and functional bodies with engineered micro and macro-structures. However, achieving fine droplets, and uniform lines by merging the droplets requires a good combination of fabrication parameters such as pressure adjustment inside the print head, print head speed, jetting frequency. Also, fabricating complex shapes from uniform lines requires well-adjusted parameters such as line thickness and layer height. In this study, we briefly explained the mechanics of the 3D freeze printing process. Following that we presented the development process of an open-source inkjet-based 3D printer. Finally, we explained the determination of inkjet dispensing and 3D printing parameters required for a high-quality 3D printing. During our experiments for the determination of fabrication parameters, we used a nanocellulose crystals-based ink due to its low cost and ease of preparation.


2020 ◽  
Vol 46 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Emad Naseri ◽  
Haley Butler ◽  
Wyatt MacNevin ◽  
Marya Ahmed ◽  
Ali Ahmadi
Keyword(s):  

2013 ◽  
Vol 845 ◽  
pp. 920-924
Author(s):  
V. Iraimudi ◽  
S. Rashia Begum ◽  
G. Arumaikkannu ◽  
R. Narayanan

Additive Manufacturing is a promising field for making three dimensional scaffolds in which parts are fabricated directly from the 3D CAD model. This paper presents, the patients CT scan data of femur bone in DICOM format is exported into MIMICS software to stack 2D scan data into 3D model. Four layers of femur bone were selected for creation of customised femur bone scaffold. Unit cell designs such as double bend curve, S bend curve, U bend curve and steps were designed using SOLIDWORKS software. Basic primitives namely square, hexagon and octagon primitives of pore size 0.6mm, 0.7 mm and 0.8 mm diameter and inter distance 0.7mm, 0.8mm and 0.9 mm are used to design the scaffold structures. In 3matic software, patterns were developed by using the above four unit cells. Then, the four layers of bone and patterns were imported into 3matic to create customised bone scaffolds. The porosities of customised femur bone scaffold were determined using the MIMICS software. It was found that the customised femur bone scaffolds for the unit cell design of U bend curve with square primitives of pore size 0.8mm diameter and inter distance 0.7mm gives higher porosity of 56.58 % compared to other scaffolds. The models were then fabricated using 3D printing technique.


2021 ◽  
Author(s):  
Xiao-Yin Liu ◽  
Chong Chen ◽  
Hai-Huan Xu ◽  
Yu-sheng Zhang ◽  
Lin Zhong ◽  
...  

Abstract Recent studies have shown that 3D printed scaffolds integrated with growth factors can guide the growth of neurites and promote axon regeneration at the injury site. However, heat, organic solvents or cross-linking agents used in conventional 3D printing reduce the biological activity of growth factors. Low temperature 3D printing can incorporate growth factors into the scaffold and maintain their biological activity. In this study, we developed a collagen/chitosan scaffold integrated with brain-derived neurotrophic factor (3D-CC-BDNF) by low temperature extrusion 3D printing as a new type of artificial controlled release system, which could prolong the release of BDNF for the treatment of SCI. 8 weeks after the implantation of scaffolds in the transected lesion of T10 of the spinal cord, 3D-CC-BDNF significantly ameliorate locomotor function of the rats. Consistent with the recovery of locomotor function, 3D-CC-BDNF treatment could fill the gap, facilitate nerve fiber regeneration, accelerate the establishment of synaptic connections and enhance remyelination at the injury site.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Changyong Liu ◽  
Junda Tong ◽  
Jun Ma ◽  
Daming Wang ◽  
Feng Xu ◽  
...  

Low-temperature deposition manufacturing (LTDM) is a technology that combines material extrusion-based 3D printing and thermally induced phase separation (TIPS) into one process. With this feature, both the merits of 3D printing and TIPS can be incorporated including complex geometries with tailorable ordered macroporous features facilitated by 3D printing and microporous/nanoporous features endowed by TIPS. These macroporous/microporous/nanoporous combined structures are important to some important applications such as tissue engineering scaffolds, porous electrodes for electrochemical energy storage, purification, and filtering applications. However, the unique advantages and potential applications of LTDM have not been fully recognized and exploited yet. In this review, we will discuss the origin, principle, advantages, processes, and machine setup of LTDM technology with an emphasis on its unique advantages in fabricating porous materials. Then, current applications of LTDM including porous tissue engineering scaffolds and emerging porous electrodes for electrochemical storage will be described. The versatility of LTDM including its capability of processing a wide range of materials, multimaterial and gradient structures, and core-shell structures will be introduced. Finally, we will conclude with a perspective and outlook on the future development and applications of LTDM technology.


Sign in / Sign up

Export Citation Format

Share Document