Clinical application of titanium individual bone scaffold using 3D printing in the reconstruction of alveolar bone ridge

Author(s):  
Patryk Kownacki
Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 480 ◽  
Author(s):  
Owen Tao ◽  
Jacqueline Kort-Mascort ◽  
Yi Lin ◽  
Hieu M. Pham ◽  
André M. Charbonneau ◽  
...  

Three-dimensional (3D) printing is an emerging technology in the field of dentistry. It uses a layer-by-layer manufacturing technique to create scaffolds that can be used for dental tissue engineering applications. While several 3D printing methodologies exist, such as selective laser sintering or fused deposition modeling, this paper will review the applications of 3D printing for craniofacial tissue engineering; in particular for the periodontal complex, dental pulp, alveolar bone, and cartilage. For the periodontal complex, a 3D printed scaffold was attempted to treat a periodontal defect; for dental pulp, hydrogels were created that can support an odontoblastic cell line; for bone and cartilage, a polycaprolactone scaffold with microspheres induced the formation of multiphase fibrocartilaginous tissues. While the current research highlights the development and potential of 3D printing, more research is required to fully understand this technology and for its incorporation into the dental field.


2020 ◽  
Vol 45 (1) ◽  
pp. 30-40 ◽  
Author(s):  
A Kessler ◽  
R Hickel ◽  
M Reymus

SUMMARY Three-dimensional (3D) printing is a rapidly developing technology that has gained widespread acceptance in dentistry. Compared to conventional (lost-wax technique) and subtractive computer numeric controlled methods, 3D printing offers process engineering advantages. Materials such as plastics, metals, and ceramics can be manufactured using various techniques. 3D printing was introduced over three decades ago. Today, it is experiencing rapid development due to the expiration of many patents and is often described as the key technology of the next industrial revolution. The transition to its clinical application in dentistry is highly dependent on the available materials, which must not only provide the required accuracy but also the necessary biological and physical properties. The aim of this work is to provide an up-to-date overview of the different printing techniques: stereolithography, digital light processing, photopolymer jetting, material jetting, binder jetting, selective laser sintering, selective laser melting, and fused filament fabrication. Additionally, particular attention is paid to the materials used in dentistry and their clinical application.


2013 ◽  
Vol 845 ◽  
pp. 920-924
Author(s):  
V. Iraimudi ◽  
S. Rashia Begum ◽  
G. Arumaikkannu ◽  
R. Narayanan

Additive Manufacturing is a promising field for making three dimensional scaffolds in which parts are fabricated directly from the 3D CAD model. This paper presents, the patients CT scan data of femur bone in DICOM format is exported into MIMICS software to stack 2D scan data into 3D model. Four layers of femur bone were selected for creation of customised femur bone scaffold. Unit cell designs such as double bend curve, S bend curve, U bend curve and steps were designed using SOLIDWORKS software. Basic primitives namely square, hexagon and octagon primitives of pore size 0.6mm, 0.7 mm and 0.8 mm diameter and inter distance 0.7mm, 0.8mm and 0.9 mm are used to design the scaffold structures. In 3matic software, patterns were developed by using the above four unit cells. Then, the four layers of bone and patterns were imported into 3matic to create customised bone scaffolds. The porosities of customised femur bone scaffold were determined using the MIMICS software. It was found that the customised femur bone scaffolds for the unit cell design of U bend curve with square primitives of pore size 0.8mm diameter and inter distance 0.7mm gives higher porosity of 56.58 % compared to other scaffolds. The models were then fabricated using 3D printing technique.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dilinuer Keranmu ◽  
Ailimaierdan Ainiwaer ◽  
Nijiati Nuermuhanmode ◽  
Wang Ling

Abstract Objective The purpose of this study was to apply concentrated growth factor (CGF) to the transplanted area with inflammation, to observe the clinical effects of CGF on the inflammation area assisted by 3D printing technology. Methods A total of 52 compromised mandibular first or second molar with chronic periapical lesions were transplanted with mature third molars. The patients were divided into CGF group (n = 26) and control group (n = 26) and transplanted into fresh extraction sockets with or without CGF. All the patients underwent clinical and radiographic examinations during the follow-up. Results Average surgery and extra-oral time were 39 min (± 7.8) and 42 s (± 10.2). The success rates of CGF group and control group were 100% and 92.3% respectively. Most of the periapical lesions in CGF group healed completely within 3 months, which was significantly faster than control group. The initial stability of CGF group was better than control group immediately after operation, and the degree of pain in CGF group was lower than control group on the 1st and 3rd day after operation. Conclusions The application of CGF in recipient site with chronic periapical lesions can accelerate the regeneration of alveolar bone and the healing of inflammation, greatly shorten the healing period. Meanwhile, CGF help to reduce postoperative pain and reaction at the early stage of healing and increase the success rate of autogenous tooth transplantation (ATT). Additionally, the use of 3D printing model can greatly reduce the extra-oral time of donor teeth.


RSC Advances ◽  
2018 ◽  
Vol 8 (22) ◽  
pp. 12471-12483 ◽  
Author(s):  
Zuhao Li ◽  
Chang Liu ◽  
Bingfeng Wang ◽  
Chenyu Wang ◽  
Zhonghan Wang ◽  
...  

The weak mechanical strength and biological inertia of Ti–6Al–4V porous titanium alloy limit its clinical application in the field of orthopedics.


Sign in / Sign up

Export Citation Format

Share Document