Wear and corrosion properties of a B–Al composite layer on pure titanium

Author(s):  
Xinyu Wang ◽  
Deyi Qu ◽  
Yonghua Duan ◽  
Mingjun Peng
2015 ◽  
Vol 60 (2) ◽  
pp. 1031-1035 ◽  
Author(s):  
J. Smolik ◽  
A. Mazurkiewicz ◽  
J. Kacprzyńska-Gołacka ◽  
M. Rydzewski ◽  
M. Szota ◽  
...  

Abstract Magnesium alloys have very interesting physical properties which make them ‘materials of the future’ for tools and machine components in many industry areas. However, very low corrosion and tribological resistance of magnesium alloys hampers the implementation of this material in the industry. One of the methods to improve the properties of magnesium alloys is the application of the solutions of surface engineering like hybrid technologies. In this paper, the authors compare the tribological and corrosion properties of two types of “MgAlitermetalic / PVD coating” composite layers obtained by two different hybrid surface treatment technologies. In the first configuration, the “MgAlitermetalic / PVD coating” composite layer was obtained by multisource hybrid surface treatment technology combining magnetron sputtering (MS), arc evaporation (AE) and vacuum heating methods. The second type of a composite layer was prepared using a hybrid technology combined with a diffusion treatment process in Al-powder and the electron beam evaporation (EB) method. The authors conclude, that even though the application of „MgAlitermetalic / PVD coating” composite layers can be an effective solution to increase the abrasive wear resistance of magnesium alloys, it is not a good solution to increase its corrosion resistance.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2017 ◽  
Vol 26 (6) ◽  
pp. 1381-1392 ◽  
Author(s):  
Jie Chen ◽  
Bing Ma ◽  
Guang Liu ◽  
Hui Song ◽  
Jinming Wu ◽  
...  

2010 ◽  
Vol 649 ◽  
pp. 61-66
Author(s):  
Zoltán Kálazi ◽  
Viktória Janó ◽  
Gábor Buza

Tungsten (W) based alloy composite layer reinforced with TiC particles has been successfully prepared on unalloyed steel sample by LMI technology. In order to obtain in situ produced TiC reinforcement, pure titanium has been introduced to the melt pool. WC powder was added for increasing the carbon content of the layer in order to avoid the softening of the matrix (with low carbon content) during TiC formation. The present study aims to investigate the optimum amount of injected WC and Ti powder to improve wear resistance and hardness of the layer. Samples were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The maximum hardness of the layer has been reached ~900HV in case of 2-4wt% of titanium content. Ti has been collected all of the carbon from the matrix when titanium content was 9,6wt%, which resulted that the austenite and (Fe,W)6C phases have been disappeared. Only α-Fe and TiC phases were presented in the layer. The hardness of the layer reduced to the hardness of the base material.


Author(s):  
Luiz Carlos Casteletti ◽  
Frederico Augusto Pires Fernandes ◽  
Stênio Cristaldo Heck ◽  
Carlos Alberto Picon ◽  
George Edward Totten

2021 ◽  
pp. 1-32
Author(s):  
Renato Pessoa ◽  
Carlos A H Laurindo ◽  
Michelle S Meruvia ◽  
Ricardo D Torres ◽  
Alexandre Mikowski ◽  
...  

Abstract In this study, the influence of Al2O3 particle amounts on the mechanical, tribological, and corrosion properties of the composite NiP-Al2O3 coating was evaluated. AISI 4140 steel was coated with NiP through an autocatalytic bath with the addition of Al2O3 particles maintained in suspension by mechanical stirring. Following, the coated samples were annealed at 600 °C to increase the hardness and to create an interdiffusion layer, which improves coating adhesion and corrosion resistance. The coating surface was characterized by SEM/EDS, XRD, microhardness, wear resistance, and corrosion tests. The results showed that the coating particles' amount depends on the bath agitation speed, the sample orientation during the deposition, and the volume of Al2O3 particles in the bath composition. Also, the number of particles in the coating affects the deposition kinetics, the thickness of the interdiffusion layer, which affects the wear and corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document