scholarly journals Corrosion study of metallic biomaterials in simulated body fluid

10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsin Nazir ◽  
Ong Pei Ting ◽  
Tan See Yee ◽  
Saravanan Pushparajan ◽  
Dasan Swaminathan ◽  
...  

This study investigated the viability of coating commercially pure titanium (CPTi) surfaces, modified via sandblasting and acid etching, with hydroxyapatite (HA)/tricalcium phosphate coatings using a simulated body fluid (SBF) solution. The samples were immersed in SBF from 3 to 7 days. The morphology and the chemistry of the HA/tricalcium phosphate coating were then analysed. Prior to immersion in SBF, the samples were sandblasted and acid etched to mimic the morphology and roughness of commercially available dental implants. The SBF aided in the formation of crystalline HA/tricalcium phosphate coatings on all the samples. The coatings were uniform and had roughness values higher than the underlying substrate. The highest roughness values for the coatings on the surfaces were obtained at 7 days of immersion in SBF with averageSavalues of 2.9 ± 0.2 µm. The presence of HA/tricalcium phosphate on the surfaces was confirmed by the Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), the X-Ray Diffraction (XRD), and the Fourier Transform Infrared Spectrometer (FTIR) analysis. This study shows that it is possible to obtain an adequate and uniform hydroxyapatite coating on pure titanium substrates in a shorter period of time with characteristics that favour the ultimate goal of implants therapy, that is, osseointegration.



Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Viorel Malinovschi ◽  
Alexandru Horia Marin ◽  
Catalin Ducu ◽  
Sorin Moga ◽  
Victor Andrei ◽  
...  

In this study, the surface of commercially pure titanium (Cp-Ti) was covered by a 21–95 µm-thick aluminum oxide layer using plasma electrolytic oxidation. Coating characterization revealed the formation of nodular and granular α- and γ-Al2O3 phases with minor amounts of TiAl2O5 and Na2Ti4O9 which yielded a maximum 49.0 GPa hardness and 50 N adhesive critical load. The corrosion resistance behavior in 3.5 wt.% NaCl solution of all plasma electrolytic oxidation (PEO) coatings was found to be two orders of magnitude higher compared to bare Ti substrate.







Sign in / Sign up

Export Citation Format

Share Document