Transient convective mass transfer for a fluid sphere dissolution in an alternating electric field

2004 ◽  
Vol 59 (11) ◽  
pp. 2223-2229 ◽  
Author(s):  
T. Elperin ◽  
A. Fominykh ◽  
Z. Orenbakh
Volume 3 ◽  
2004 ◽  
Author(s):  
Tov Elperin ◽  
Andrew Fominykh ◽  
Zakhar Orenbakh

In this study we considered mass transfer in a binary system comprising a stationary fluid dielectric sphere embedded into an immiscible dielectric liquid under the influence of an alternating electric field. Fluid sphere is assumed to be solvent-saturated so that an internal resistance to mass transfer can be neglected. Mass flux is directed from a fluid sphere to a host medium, and the applied electric field causes a creeping flow around the sphere. Droplet deformation under the influence of the electric field is neglected. The problem is solved in the approximations of a thin concentration boundary layer and finite dilution of a solute in the solvent. The thermodynamic parameters of a system are assumed constant. The nonlinear partial parabolic differential equation of convective diffusion is solved by means of a generalized similarity transformation, and the solution is obtained in a closed analytical form for all frequencies of the applied electric field. The rates of mass transfer are calculated for both directions of fluid motion — from the poles to equator and from the equator to the poles. Numerical calculations show essential (by a factor of 2–3) enhancement of the rate of mass transfer in water droplet–benzonitrile and droplet of carbontetrachloride–glycerol systems under the influence of electric field for a stagnant droplet. The asymptotics of the obtained solutions are discussed.


2011 ◽  
Vol 312-315 ◽  
pp. 259-264
Author(s):  
Tov Elperin ◽  
A. Fominykh

We consider non-stationary convective mass transfer in a binary system comprising a stationary dielectric two-dimensional fluid drop embedded into an immiscible dielectric liquid under the influence of a constant uniform electric field. The partial differential equation of diffusion is solved by means of a similarity transformation, and the solution is obtained in a closed analytical form. Dependence of Sherwood number vs. the strength of the applied electric field is analyzed. It is shown that an electric field can be used for enhancement of the rate of mass transfer in terrestrial and reduced gravity environments.


2007 ◽  
Vol 10 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Martin J. Garland ◽  
S. U. Rahman ◽  
K. A. Mahgoub ◽  
Ahmad Nafees

Sign in / Sign up

Export Citation Format

Share Document