Problems of Fractional Differential Dynamics of Convective Mass Transfer and Mass Exchange During Two-Dimensional Geofiltration

2020 ◽  
Vol 52 (7) ◽  
pp. 38-51
Author(s):  
Vladimir M. Bulavatskiy
2011 ◽  
Vol 312-315 ◽  
pp. 259-264
Author(s):  
Tov Elperin ◽  
A. Fominykh

We consider non-stationary convective mass transfer in a binary system comprising a stationary dielectric two-dimensional fluid drop embedded into an immiscible dielectric liquid under the influence of a constant uniform electric field. The partial differential equation of diffusion is solved by means of a similarity transformation, and the solution is obtained in a closed analytical form. Dependence of Sherwood number vs. the strength of the applied electric field is analyzed. It is shown that an electric field can be used for enhancement of the rate of mass transfer in terrestrial and reduced gravity environments.


2007 ◽  
Vol 10 (3) ◽  
pp. 277-286 ◽  
Author(s):  
Martin J. Garland ◽  
S. U. Rahman ◽  
K. A. Mahgoub ◽  
Ahmad Nafees

2003 ◽  
Vol 68 (11) ◽  
pp. 2080-2092 ◽  
Author(s):  
Martin Keppert ◽  
Josef Krýsa ◽  
Anthony A. Wragg

The limiting diffusion current technique was used for investigation of free convective mass transfer at down-pointing up-facing isosceles triangular surfaces of varying length and inclination. As the mass transfer process, copper deposition from acidified copper(II) sulfate solution was used. It was found that the mass transfer rate increases with inclination from the vertical to the horizontal position and decreases with length of inclined surface. Correlation equations for 7 angles from 0 to 90° were found. The exponent in the ShL-RaL correlation ranged from 0.247 for the vertical case, indicating laminar flow, to 0.32 for inclinations of 60 to 90°, indicating mixed or turbulent flow. The general correlation ShL = 0.358(RaL sin θ)0.30 for the RaL sin θ range from 7 × 106 to 2 × 1011 and inclination range from 15 to 90° was obtained.


2017 ◽  
Vol 2 (11) ◽  
Author(s):  
Jerome Duplat ◽  
Mathieu Grandemange ◽  
Cedric Poulain

2021 ◽  
Vol 60 (2) ◽  
pp. 2629-2639
Author(s):  
Yin Yang ◽  
Grzegorz Rządkowski ◽  
Atena Pasban ◽  
Emran Tohidi ◽  
Stanford Shateyi

2020 ◽  
Vol 12 (8) ◽  
pp. 168781402093046 ◽  
Author(s):  
Noor Saeed Khan ◽  
Qayyum Shah ◽  
Arif Sohail

Entropy generation in bioconvection two-dimensional steady incompressible non-Newtonian Oldroyd-B nanofluid with Cattaneo–Christov heat and mass flux theory is investigated. The Darcy–Forchheimer law is used to study heat and mass transfer flow and microorganisms motion in porous media. Using appropriate similarity variables, the partial differential equations are transformed into ordinary differential equations which are then solved by homotopy analysis method. For an insight into the problem, the effects of various parameters on different profiles are shown in different graphs.


Sign in / Sign up

Export Citation Format

Share Document