Design of sliding mode controller for the optimal control of fed-batch cultivation of recombinant E. coli

2009 ◽  
Vol 64 (21) ◽  
pp. 4433-4441 ◽  
Author(s):  
Seyed Saleh Mohseni ◽  
Valiollah Babaeipour ◽  
Ahmad Reza Vali
2013 ◽  
Vol 11 (1) ◽  
pp. 123-134
Author(s):  
Mahdi Feyzdar ◽  
Ahmad Reza Vali ◽  
Valiollah Babaeipour

Abstract A novel approach to identification of fed-batch cultivation of E. coli BL21 (DE3) has been presented. The process has been identified in the system that is designed for maximum production of γ-interferon protein. Dynamic order of the process has been determined by Lipschitz test. Multilayer Perceptron neural network has been used to process identification by experimental data. The optimal brain surgeon method is used to reduce the model complexity that can be easily implemented. Validation results base on autocorrelation function of the residuals, show good performance of neural network and make it possible to use of it in process analyses.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 269
Author(s):  
Lijuan Zhong ◽  
Zheng Liu ◽  
Yinghua Lu

The aim of this study was to analyze the major influence factors of culture medium on the expression level of β-1,3-1,4-glucanase, and to further develop an optimized process for the extracellular production of β-glucanase at a bioreactor scale (7 L) with a genetically engineered Escherichia coli (E. coli) JM109-pLF3. In this study, batch cultivation and fed-batch cultivation including the constant rate feeding strategy and the DO-stat (DO: Dissolved Oxygen) feeding strategy were conducted. At a 7 L bioreactor scale for batch cultivation, biomass reached 3.14 g/L and the maximum β-glucanase activity was 506.94 U/mL. Compared with batch cultivation, the addition of glycerol, complex nitrogen and complete medium during fed-batch cultivation increased the production of biomass and β-1,3-1,4-glucanase. The maximum biomass and β-glucanase activity, which were 7.67 g/L and 1680 U/mL, respectively, that is, 2.45 and 3.31 times higher than those obtained with batch cultivation, were obtained by feeding a complex nitrogen source at a constant rate of 1.11 mL/min. Therefore, these nutritional supplements and strategies can be used as a reference to enhance the production of other bioproducts from E. coli.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


Sign in / Sign up

Export Citation Format

Share Document