Generalization of droplet entrainment rate correlation for annular flow considering disturbance wave properties

2017 ◽  
Vol 164 ◽  
pp. 279-291 ◽  
Author(s):  
Li Liu ◽  
Bofeng Bai
2019 ◽  
Author(s):  
M. Ishii ◽  
P. Sawant ◽  
G. Wang

Energy ◽  
2021 ◽  
pp. 122990
Author(s):  
Chaofan Li ◽  
Yajing Song ◽  
Long Xu ◽  
Ning Zhao ◽  
Fan Wang ◽  
...  

2021 ◽  
Author(s):  
Junpei Tabuchi ◽  
Yuki Narushima ◽  
Kenichi Katono ◽  
Tomio Okawa

Abstract Many studies have been conducted on droplet entrainment in an annular flow regime, but little is known about droplet entrainment caused by nucleate boiling. In this report, visualization results of droplet entrainment caused by nucleate boiling are described. We observed two processes of droplet entrainment. The first one causes bubble bursting at a water surface. The second one causes filament breakup which occurs when the vapor bubble reaches and collapses at the interface between air and liquid. From comparison of the phenomena for the two processes, we found that the diameters of the droplets and vapor bubbles were considerably different. Using the results of this research allows the effect of forced convection to be taken into account. In the future, we plan to expand the amount of data and develop a boiling entrainment model under forced convection conditions.


Author(s):  
Zaiyong Ma ◽  
Yue Nina ◽  
Suizheng Qiu ◽  
Wenxi Tian ◽  
Guanghui Su

Liquid metals have been used as coolants of several kinds of nuclear reactors, and the prediction of critical heat flux (CHF) is rather important for the design, safety and economy of these reactors. A film dryout model considering the deposition and entrainment of droplets was established to obtain the CHF of liquid metal in annular flow flowing in tubes. The correlations of deposition rate, entrainment rate and so on for conventional fluids were used, and the initial entrainment fraction was determined according to experimental data. Results showed that the correlations for conventional fluids could be used for liquid metals approximately, but relatively large error might occur for large heat flux. The accuracy of this model for sodium and potassium was similar for small heat flux, but had some differences for large heat flux. Special correlations of deposition rate, entrainment rate and so on should be developed to predict the CHF of liquid metals more accurately.


Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
John Shirokoff ◽  
Mohammad Azizur Rahman

Abstract Computational fluid dynamics (CFD) simulation is presented to investigate the annular flow behavior in the vertical pipe by using ANSYS Fluent platform 17.2. The study was analyzed complex behavior of annular flow in two cases (upward and downward flow) for different air superficial velocities and range of Reynolds number for water, in order to obtain the effect of orientation flow and increasing superficial gas and liquid velocities on the base film, mean disturbance wave thickness, the average longitudinal size of disturbance wave as well as pressure gradient. For multiphase flow model, the volume of fluid method (VOF) for two-phase flow modelling was used and coupled with RNG k-ε turbulence model to predict fully annular flow structures in the upward and downward flow direction. From CFD simulation results, it is clear to see how increases in air velocity result in reductions in film thickness and increase in pressure gradient. Additionally, the results showed monotonic enhancement of film thickness occurring in tandem with increases in the liquid flow rate. However, due to the effect of gravitational force and interfacial friction, the film thickness and pressure gradient are slightly larger for the upward flow than for the downward flow. The results agree with the recent experimental data that studied the annular flow behavior and pressure drop in the upward and downward flow direction. This study will be very helpful in understanding multiphase flow behavior in natural gas wells.


1985 ◽  
Vol 28 (240) ◽  
pp. 1105-1112 ◽  
Author(s):  
Kotohiko SEKOGUCHI ◽  
Osamu TANAKA ◽  
Takashi UENO

Sign in / Sign up

Export Citation Format

Share Document