One-dimensional drift-flux model and a new approach to calculate drift velocity and gas holdup in bubble columns

2020 ◽  
Vol 211 ◽  
pp. 115302
Author(s):  
Azadeh Bahramian ◽  
Siamak Elyasi
2020 ◽  
Vol 386 ◽  
pp. 121222
Author(s):  
Hongzhou Tian ◽  
Shaofeng Pi ◽  
Yaocheng Feng ◽  
Zheng Zhou ◽  
Feng Zhang ◽  
...  

2000 ◽  
Author(s):  
Boštjan Končar ◽  
Ivo Kljenak ◽  
Borut Mavko

Abstract The RELAP5/MOD3.2.2 Gamma code was assessed against low pressure boiling flow experiments performed by Zeitoun and Shoukri (1997) in a vertical annulus. The predictions of subcooled boiling bubbly flow showed that the present version of the RELAP5 code underestimates the void fraction increase along the flow and strongly overestimates the vapor drift velocity. It is shown that in the calculations, a higher vapor drift velocity causes a lower interphase drag and may be a possible reason for underpredicted void fraction development. A modification is proposed, which introduces the replacement of the EPRI drift-flux formulation, which is currently incorporated in the RELAP5 code, with the Zuber-Findlay (1965) drift-flux model for the experimental low pressure conditions of the vertical bubbly flow regime. The improved experiment predictions with the modified RELAP5 code are presented and analysed.


2012 ◽  
Vol 40 ◽  
pp. 166-177 ◽  
Author(s):  
Shao-Wen Chen ◽  
Yang Liu ◽  
Takashi Hibiki ◽  
Mamoru Ishii ◽  
Yoshitaka Yoshida ◽  
...  

Author(s):  
Takashi HIBIKI ◽  
Hiroshi GODA ◽  
Seungjin KIM ◽  
Mamoru ISHII ◽  
Jennifer UHLE

Author(s):  
Takashi Hibiki ◽  
Mamoru Ishii

In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the distribution parameter and the drift velocity have been studied for bubbly-flow regime. The constitutive equation that specifies the distribution parameter in the bubbly flow has been derived by taking into account the effect of the bubble size on the phase distribution, since the bubble size would govern the distribution of the void fraction. A comparison of the newly developed model with various fully-developed bubbly-flow data over a wide range of flow parameters shows a satisfactory agreement. The constitutive equation for the drift velocity developed by Ishii has been reevaluated by the drift velocity obtained from local flow parameters such as void fraction, gas velocity and liquid velocity measured under steady fully-developed bubbly flow conditions. It has been confirmed that the newly developed model of the distribution parameter and the drift velocity correlation developed by Ishii can also be applicable to developing bubbly flows.


AIAA Journal ◽  
2006 ◽  
Vol 44 (7) ◽  
pp. 1635-1642 ◽  
Author(s):  
Takashi Hibiki ◽  
Tomoji Takamasa ◽  
Mamoru Ishii ◽  
Kamiel S. Gabriel

Author(s):  
Rinaldo Antonio de Melo Vieira ◽  
Artur Posenato Garcia

One-dimensional single-phase flow has only one characteristic velocity, which is the area-averaged velocity. On the other hand, one-dimensional two-phase flow has several characteristics velocities, such as center of volume mixture velocity and center of mass mixture velocity. Under slip condition, usually they are quite different. In a simple way, one may think that the petroleum correlations and the drift-flux model are an attempt to “adapt” the single-phase momentum equation for a mixture of more than one phase, where the several parameters in the single-phase equation are replaced by average-mixture ones. These two models use different considerations for this “adaptation”. For instance, for friction loss calculation, petroleum correlations use the mixture volume velocity while drift-flux models use the mixture mass velocity. Normally, the volume velocity is higher than the mass velocity, and petroleum correlations may calculate friction gradients higher than the ones obtained by drift-flux models. This is very important, especially for horizontal and slightly inclined upward flows, where the friction pressure gradient is dominant. This work compares the pressure gradient evaluated by these two models for horizontal and slightly inclined upward flowlines using available data found in literature. The comparison shows that, depending on the situation, one model gives better results than the other. Based on the results, a new approach for two-phase flow friction calculation is proposed. The new model represents a combination of the approach used by the Petroleum Correlations and the Drift-Flux Model, using different characteristic velocities (volume, mass and a new one defined by the authors). The new model is very simple to implement and shows good agreement with the tested data.


Sign in / Sign up

Export Citation Format

Share Document