Dating of chemical weathering processes by in situ measurement of U-series disequilibria in supergene Fe-oxy/hydroxides using LA-MC-ICPMS

2006 ◽  
Vol 235 (1-2) ◽  
pp. 76-94 ◽  
Author(s):  
J.P. Bernal ◽  
S.M. Eggins ◽  
M.T. McCulloch ◽  
R. Grün ◽  
R.A. Eggleton
2021 ◽  
Author(s):  
Liang Ding ◽  
Ruyi Zhou ◽  
Tianyi Yu ◽  
Haibo Gao ◽  
Huaiguang Yang ◽  
...  

Abstract China’s first Mars rover, Zhurong, has successfully touched down on the southern Utopia Planitia of Mars at 109.925° E, 25.066° N, and since performed cooperative multiscale investigations with the Tianwen-1 orbiter. Here we present primary localization and surface characterization results based on complementary data of the first 60 sols. The Zhurong rover has traversed 450.9 m southwards over a flat surface with mild wheel slippage (less than 0.2 in slip ratio). The encountered crescent-shaped sand dune indicates a NE-SW local wind direction, consistent with larger-range remote-sensing observations. Soil parameter analysis based on terramechanics indicates that the topsoil has high bearing strength and cohesion, and its equivalent stiffness and internal friction angle are ~1390-5872 kPa∙m-n and ~21°-34° respectively. Rocks observed strewn with dense pits, or showing layered and flaky structures, are presumed to be involved in physical weathering like severe wind erosion and potential chemical weathering processes. These preliminary observations suggest great potential of in-situ investigations by the scientific payload suite of the Zhurong rover in obtaining new clues of the region’s aeolian and aqueous history. Cooperative investigations using the related payloads on both the rover and the obiter could peek into the habitability evolution of the northern lowlands on Mars.


2003 ◽  
Vol 2 (4) ◽  
pp. 589
Author(s):  
Douglas R. Cobos ◽  
John M. Baker

2015 ◽  
Vol 84 (8) ◽  
pp. 567-572
Author(s):  
Tadafumi HASHIMOTO ◽  
Masahito MOCHIZUKI

Author(s):  
Philipp Peter Breese ◽  
Tobias Hauser ◽  
Daniel Regulin ◽  
Stefan Seebauer ◽  
Christian Rupprecht

AbstractThe powder mass flow rate is one of the main parameters regarding the geometrical precision of built components in the additive manufacturing process of laser metal deposition. However, its accuracy, constancy, and repeatability over the course of the running process is not given. Reasons among others are the performance of the powder conveyors, the complex nature of the powder behavior, and the resulting issues with existing closed-loop control approaches. Additionally, a direct in situ measurement of the powder mass flow rate is only possible with intrusive methods. This publication introduces a novel approach to measure the current powder mass flow rate at a frequency of 125 Hz. The volumetric powder flow evaluation given by a simple optical sensor concept was transferred to a mass flow rate through mathematical dependencies. They were found experimentally for a nickel-based powder (Inconel 625) and are valid for a wide range of mass flow rates. With this, the dynamic behavior of a vibration powder feeder was investigated and a memory effect dependent on previous powder feeder speeds was discovered. Next, a closed-loop control with the received sensor signal was implemented. The concept as a whole gives a repeatable and accurate powder mass flow rate while being universally retrofittable and applicable. In a final step, the improved dynamic and steady performance of the powder mass flow rate with closed-loop control was validated. It showed a reduction of mean relative errors for step responses of up to 81% compared to the uncontrolled cases.


Sign in / Sign up

Export Citation Format

Share Document