How landscape heterogeneity governs stream water concentration-discharge behavior in carbonate terrains (Konza Prairie, USA)

2019 ◽  
Vol 527 ◽  
pp. 118989 ◽  
Author(s):  
P.L. Sullivan ◽  
M.W. Stops ◽  
G.L. Macpherson ◽  
L. Li ◽  
D.R. Hirmas ◽  
...  
2015 ◽  
Vol 19 (8) ◽  
pp. 3333-3347 ◽  
Author(s):  
E. M. Herndon ◽  
A. L. Dere ◽  
P. L. Sullivan ◽  
D. Norris ◽  
B. Reynolds ◽  
...  

Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (C–Q) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.


2017 ◽  
Author(s):  
Pamela L. Sullivan ◽  
◽  
Marvin Wes Stops ◽  
G.L. Macpherson ◽  
Li Li ◽  
...  

2020 ◽  
Author(s):  
Gaëlle Tallec ◽  
José Manuel Tunqui Neira ◽  
Andréassian Vazken ◽  
Jean-Marie Mouchel

<p>Discharge is one of the major factors influencing the evolution of solute concentration in river water. Different modeling approaches exist to characterize the dependency of concentration on discharge: the simplest require calibration, they are based on measurable quantities (stream discharge and stream water concentration) but do not allow for an explicit, physical, flow-path interpretation; the more complex are based on mixing assumptions with different end-member sources, but require knowledge of the (unmeasurable) flow components. Here, we present a combination between the simple concentration–discharge (C-Q) approach with the mass balance (MB) mixing approach, which we apply to a new high-frequency series on the Oracle-Orgeval Observatory (France) (Tunqui et al., submitted). This new methodology shows a better performance than the two approaches applied separately, allowing us to better describe the concentrations measured in the stream.</p><p>Reference : Tunqui et al. Combining concentration-discharge relationships with mixing models. Submitted to Journal of Hydrology</p>


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


2016 ◽  
Vol 1 (1) ◽  
pp. 45-52
Author(s):  
Palupi Puspitorini

The aim of this study was to select the best sources of auxin of which it can stimulate the growth of shoots Pineapple plant cuttings. This research is compiled in a completely randomized design (CRD) with 4 treatments and 6 replications. The Data were statistically Analyzed by the DMRT. Level of treatment given proves that no treatment 0%, cow urine concentration of 25%, young coconut water concentration of 25% and Rootone F 100 mg / cuttings. The results showed that cow urine concentrations of 25% and Rootone F 100 mg give the best results in stimulating the growth of shoots pineapple stem cuttings. Experimental results concluded that the effect of this natural hormone were better than the shoots without given hormone.           


Data Series ◽  
10.3133/ds37 ◽  
1996 ◽  
Author(s):  
Richard B. Alexander ◽  
J.R. Slack ◽  
A.S. Ludtke ◽  
K.K. Fitzgerald ◽  
T.L. Schertz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document