Effect of fO2 on Eu partitioning between clinopyroxene, orthopyroxene and basaltic melt: Development of a Eu3+/Eu2+ oxybarometer

2021 ◽  
Vol 559 ◽  
pp. 119967
Author(s):  
Alessandro Fabbrizio ◽  
Max W. Schmidt ◽  
Maurizio Petrelli
Keyword(s):  
Author(s):  
Huihui Zhang ◽  
Ningli Zhao ◽  
Chao Qi ◽  
Xiaoge Huang ◽  
Greg Hirth

Shear deformation of a solid-fluid, two-phase material induces a fluid segregation process that produces fluid-enriched bands and fluid-depleted regions, and crystallographic preferred orientation (CPO) characterized by girdles of [100] and [001] axes sub-parallel to the shear plane and a cluster of [010] axes sub-normal to the shear plane, namely the AG-type fabric. Based on experiments of two-phase aggregates of olivine + basalt, a two-phase flow theory and a CPO-formation model were established to explain these microstructures. Here, we investigate the microstructure in a two-phase aggregate with supercritical CO2 as the fluid phase and examine the theory and model, as CO2 is different from basaltic melt in rheological properties. We conducted high‐temperature and high-pressure shear deformed experiments at 1 GPa and 1100ºC in a Griggs-type apparatus on samples made of olivine + dolomite, which decomposed into carbonate melt and CO2 at experimental conditions. After deformation, CO2 segregation and an AG-type fabric occurred in these CO2-bearing samples, inconsistency with basaltic melt-bearing samples. The SPO-induce CPO model was used to explain the formation of the fabric. Our results suggest that the influences of CO2 as a fluid phase on the microstructure of a two-phase olivine aggregate is similar to that of basaltic melt and can be explained by the CPO-formation model for the solid-fluid system.


2020 ◽  
Vol 8 ◽  
Author(s):  
Anastassia Y. Borisova ◽  
Nail R. Zagrtdenov ◽  
Michael J. Toplis ◽  
Georges Ceuleneer ◽  
Oleg G. Safonov ◽  
...  
Keyword(s):  

2008 ◽  
Vol 72 (19) ◽  
pp. 4756-4777 ◽  
Author(s):  
Yang Chen ◽  
Youxue Zhang
Keyword(s):  

1984 ◽  
Vol 121 (6) ◽  
pp. 615-620 ◽  
Author(s):  
Colin H. Donaldson

AbstractThe rates of resorption of pyrope in basaltic melt and of pyrope decomposition to pyroxene + melt at pressures below the stability of garnet are used to examine the proposition (Chapman, 1976) that pyrope megacrysts in the Elie Ness neck began ascent from the mantle at 1300–1450°C. Both reactions are extremely rapid at these temperatures and yet the petrographic evidence is that neither occurred. Either the transporting magma cooled extremely rapidly during ascent (> 30000 °/h) or, more likely, was considerably cooler than previously proposed. Water was a significant constituent of the magma, and a crystallization temperature for the garnet of as little as 1000 °C is possible, based on existing phase–equilibria data.


1997 ◽  
Vol 102 (B1) ◽  
pp. 803-814 ◽  
Author(s):  
Bernd Zimanowski ◽  
Ralf Büttner ◽  
Volker Lorenz ◽  
Hans-Georg Häfele

2004 ◽  
Vol 45 (10) ◽  
pp. 2011-2044 ◽  
Author(s):  
AKIRA ISHIKAWA ◽  
SHIGENORI MARUYAMA ◽  
TSUYOSHI KOMIYA

Abstract A varied suite of mantle xenoliths from Malaita, Solomon Islands, was investigated to constrain the evolution of the mantle beneath the Ontong Java Plateau. Comprehensive petrological and thermobarometric studies make it possible to identify the dominant processes that produced the compositional diversity and to reconstruct the lithospheric stratigraphy in the context of a paleogeotherm. P–T estimates show that both peridotites and pyroxenites can be assigned to a shallower or deeper origin, separated by a garnet-poor zone of 10 km between 90 and 100 km. This zone is dominated by refractory spinel harzburgites (Fo91–92), indicating the occurrence of an intra-lithospheric depleted zone. Shallower mantle (∼Moho to 95 km) is composed of variably metasomatized peridotite with subordinate pyroxenite derived from metacumulates. Deeper mantle (∼95–120 km) is represented by pyroxenite and variably depleted peridotites that are unevenly distributed; the least-depleted garnet lherzolite (Fo90–91) lies just below the garnet-poor depleted zone (∼100–110 km), whereas the presence of pyroxenite is restricted to the deepest region (∼110–120 km), together with relatively Fe-enriched garnet lherzolite (Fo87–88). This depth-related variation (including the depleted zone) can be explained by assuming that the degree of melting for a basalt–peridotite hybrid source was systematically different at each level of arrival depth within a single adiabatically ascending mantle plume: (1) the depleted zone at the top of the mantle plume, where garnet was totally consumed in the residual solid; (2) an intermediate part of the plume dominated by the least-depleted garnet lherzolite just above the depth of the peridotite solidus; (3) the deepest pyroxenite-rich zone, whose petrochemical variation is best explained by the interaction between peridotite and normative quartz-rich basaltic melt, below the solidus of peridotite and liquidus of basalt. We explain the obvious lack of pyroxenites at shallower depths as the effective extraction of hybrid melt from completely molten basalt through the partially molten ambient peridotite, which caused the voluminous eruption of the Ontong Java Plateau basalts. From these interpretations, we conclude that the lithosphere forms a genetically unrelated two-layered structure, comprising shallower oceanic lithosphere and deeper impinged plume material, which involved a recycled basaltic component, now present as a pyroxenitic heterogeneity. This interpretation for the present lithospheric structure may explain the seismically anomalous root beneath the Ontong Java Plateau.


Sign in / Sign up

Export Citation Format

Share Document