scholarly journals Titanium isotopic compositions of bulk rocks and mineral separates from the Kos magmatic suite: Insights into fractional crystallization and magma mixing processes

2021 ◽  
pp. 120303
Author(s):  
Nicolas D. Greber ◽  
Thomas Pettke ◽  
Nicolas Vilela ◽  
Pierre Lanari ◽  
Nicolas Dauphas
2004 ◽  
Vol 36 (1) ◽  
pp. 482 ◽  
Author(s):  
Κ. Αρίκας ◽  
Π. Βουδούρης ◽  
M. R. Kloos ◽  
Ch. Tesch

The penological, mineralogical and geochemical study of tertiary volcanic rocks from Petrota Graben/Maronia, resulted in the distinction of the following pétrographie groups: a) a high-K calcalkaline group (andesites-dacites), b) a shoshonitic group (shoshonitic andésites, trachytic lavas, c) rhyodacitic ignimbrites and ignimbritic tuffs with high-K calc-alkaline to shoshonitic affinity, and d) rhyolites. The shoshonitic volcanic rocks and the rhyolites are probably originated from the neighbouring Maronia plutonio complex. In addition the calc-alkaline group is related to similar volcanics outcroping in the Mesti-Kassiteres area (the northeastern extension of the Graben). The petrogenesis of the volcanic rocks of the Petrota gragen is attibuted to fractional crystallization and/or magma mixing processes. Epithermal style mineralizations in Mavrokoryfi, Perama Hill and Odontoto are believed to be genetically related to the rhyolitic magmatism in the area.


There are well established differences in the chemical and isotopic characteristics of the calc-alkaline basalt—andesite-dacite-rhyolite association of the northern (n.v.z.), central (c.v.z.) and southern volcanic zones (s.v.z.) of the South American Andes. Volcanic rocks of the alkaline basalt-trachyte association occur within and to the east of these active volcanic zones. The chemical and isotopic characteristics of the n.v.z. basaltic andesites and andesites and the s.v.z. basalts, basaltic andesites and andesites are consistent with derivation by fractional crystallization of basaltic parent magmas formed by partial melting of the asthenospheric mantle wedge containing components from subducted oceanic lithosphere. Conversely, the alkaline lavas are derived from basaltic parent magmas formed from mantle of ‘within-plate’ character. Recent basaltic andesites from the Cerro Galan volcanic centre to the SE of the c.v.z. are derived from mantle containing both subduction zone and within-plate components, and have experienced assimilation and fractional crystallization (a.f.c.) during uprise through the continental crust. The c.v.z. basaltic andesites are derived from mantle containing subduction-zone components, probably accompanied by a.f.c. within the continental crust. Some c.v.z. lavas and pyroclastic rocks show petrological and geochemical evidence for magma mixing. The petrogenesis of the c.v.z. lavas is therefore a complex process in which magmas derived from heterogeneous mantle experience assimilation, fractional crystallization, and magma mixing during uprise through the continental crust.


2019 ◽  
Vol 60 (11) ◽  
pp. 2051-2075
Author(s):  
Brett H Walker ◽  
Michael O Garcia ◽  
Tim R Orr

Abstract The high frequency of historical eruptions at Kīlauea Volcano presents an exceptional opportunity to address fundamental questions related to the transport, storage, and interaction of magmas within rift zones. The Nāpau Crater area on Kīlauea’s East Rift Zone (ERZ) experienced nine fissure eruptions within 50 years (1961–2011). Most of the magma intruded during these frequent eruptions remained stored within the rift zone, creating a potential magma mixing depot within the ERZ. The superbly monitored and sampled 2011 eruption (Puʻu ʻŌʻō episode 59) presents an extraordinary opportunity to evaluate magma mixing processes within the ERZ. Whole-rock, glass, and olivine compositions were determined, not only for lava from the 2011 eruption, but also for a new suite of Nāpau Crater area samples from the 1963, 1965, 1968, 1983, and 1997 eruptions, as well as the previously undocumented 1922 eruption. Whole-rock XRF data revealed two geochemically distinct magma batches for episode 59: one less evolved (∼6·6 wt % MgO, 0·46 wt % K2O) than the other (∼6·2 wt % MgO, 0·58 wt % K2O). Episode 59 lava is remarkably aphyric (∼0·1 vol. % phenocrysts), making use of mineralogy to identify parent magma affinities problematic. Linear compositional trends of whole-rock major and trace elements, and reversely zoned olivine crystals indicate episode 59 lavas underwent magma mixing. Least squares regression calculations and plots of major and trace element data, were used to evaluate whether the episode 59 samples are products of mixing summit-derived magma with residual magma from previous Nāpau Crater area eruptions. The regression results and trace element ratios are inconsistent with previously proposed mixing scenarios, but they do support mixing between summit-derived magma and residual magma from the 1983 and 1997 Nāpau Crater area eruptions. These magmas were stored in physically and chemically distinct pods at depths of 1·6–3·0 km prior to mixing with new magma intruded from the summit to produce the episode 59 lava. One pod contained a fractionated equivalent of 1983 lava, and the other a hybrid of compositions similar to 1983 and 1997 lavas. The petrology of episode 59 lava demonstrates that magmas from two previous eruptions (1983 and 1997) were available to mix with magma intruded from the summit region. This study clarifies the pre-eruptive history of the mixed episode 59 lava, and elucidates the evolution of the volcano's magmatic system in a region of frequent eruptions.


Lithos ◽  
2020 ◽  
Vol 376-377 ◽  
pp. 105776
Author(s):  
Zuxing Chen ◽  
Zhigang Zeng ◽  
Xiaoyuan Wang ◽  
Xing Peng ◽  
Yuxiang Zhang ◽  
...  

1999 ◽  
Vol 36 (5) ◽  
pp. 819-831 ◽  
Author(s):  
J B Thomas ◽  
A K Sinha

The quartz dioritic Quottoon Igneous Complex (QIC) is a major Paleogene (65-56 Ma) magmatic body in northwestern British Columbia and southeastern Alaska that was emplaced along the Coast shear zone. The QIC contains two different igneous suites that provide information about source regions and magmatic processes. Heterogeneous suite I rocks (e.g., along Steamer Passage) have a pervasive solid-state fabric, abundant mafic enclaves and late-stage dikes, metasedimentary screens, and variable color indices (25-50). The homogeneous suite II rocks (e.g., along Quottoon Inlet) have a weak fabric developed in the magmatic state (aligned feldspars, melt-filled shears) and more uniform color indices (24-34) than in suite I. Suite I rocks have Sr concentrations <750 ppm, average LaN/YbN = 10.4, and initial 87Sr/86Sr ratios that range from 0.70513 to 0.70717. The suite II rocks have Sr concentrations >750 ppm, average LaN/YbN = 23, and initial 87Sr/86Sr ratios that range from 0.70617 to 0.70686. This study suggests that the parental QIC magma (initial 87Sr/86Sr approximately 0.706) can be derived by partial melting of an amphibolitic source reservoir at lower crustal conditions. Geochemical data (Rb, Sr, Ba, and LaN/YbN) and initial 87Sr/86Sr ratios preclude linkages between the two suites by fractional crystallization or assimilation and fractional crystallization processes. The suite I rocks are interpreted to be the result of magma mixing between the QIC parental magma and a mantle-derived magma. The suite II rocks are a result of assimilation and fractional crystallization processes.


Lithosphere ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 834-854 ◽  
Author(s):  
Yan Zhao ◽  
Wenhao Ao ◽  
Hong Zhang ◽  
Qian Wang ◽  
Mingguo Zhai ◽  
...  

Abstract Latest Paleoproterozoic (ca. 1.8–1.6 Ga) magmatic rocks outcrop in the Dunhuang terrane, represented by A-type granites and mafic (basaltic) rocks that have metamorphosed into amphibolites. The A-type granites, emplaced at ca. 1.79–1.77 Ga, are geochemically characterized by high Na2O + K2O, Fe2O3T, Zr, Nb, and Ce contents, as well as high Fe2O3T/(Fe2O3T + MgO) and Ga/Al ratios. Furthermore, they have Nb/Ta, Y/Nb, Rb/Nb, and Sc/Nb ratios of 12.10–15.56, 1.45–1.79, 3.52–6.51, and 0.11–0.19, respectively, showing affinity to A2-type granite. The A-type granites have negative εNd(t) values (−5.4 to −4.8) with Neoarchean depleted mantle (TDM2) ages (2591–2494 Ma), corresponding to coupling between εHf(t) values (−4.85 to -0.92) and TDM2 ages (2817–2556 Ma) of zircons. Therefore, the A-type granite pluton was mostly generated by partial melting of Neoarchean tonalitic to granodioritic basement rocks of the Dunhuang Complex in a postcollisional tectonic setting following a late Paleoproterozoic continent-continent collisional event. The metamafic rocks have a protolith age of 1605 ± 45 Ma and metamorphic age of 317 ± 20 Ma, indicating a Paleozoic tectonic event. The metamafic rock samples are geochemically characterized by relatively high alkali (Na2O + K2O = 4.39–4.81 wt%) contents and low Nb/Y (0.63–0.66) ratios, and they show steep rare earth element (REE) patterns with light REE enrichment and insignificant Eu anomalies and Nb-Ta, Zr-Hf, and Ti anomalies, resembling subalkaline oceanic-island basalt affinity. They have positive εNd(t) values (+0.8 to +1.8) close to the chondrite evolutionary line and variable εHf(t) values (-1.09 to +9.06) of zircons. Hence, the protolith of the metamafic rocks may have been produced by magma mixing processes between a depleted mantle source and a metasomatized lithospheric mantle source during the initial rifting stage in an extensional setting, completing the formation of the Precambrian Dunhuang Complex. Considering the ca. 1.85–1.80 Ga regional metamorphism in the Dunhuang terrane, the latest Paleoproterozoic (ca. 1.8–1.6 Ga) A2-type granitic magmatism and mafic magmatism documented the postorogenic to initial rifting processes following the global-scale late Paleoproterozoic collisional event, which is comparable with ca. 1.80–1.67 Ga postcollisional and ca. 1.60–1.53 Ga anorogenic magmatism in the North China craton, but different from that of the Tarim craton.


Sign in / Sign up

Export Citation Format

Share Document