Photodegradation of ibuprofen by TiO 2 co-doping with urea and functionalized CNT irradiated with visible light – Effect of doping content and pH

Chemosphere ◽  
2016 ◽  
Vol 155 ◽  
pp. 471-478 ◽  
Author(s):  
Ching Yuan ◽  
Chung-Hsuang Hung ◽  
Huei-Wen Li ◽  
Wei-Hsian Chang
2021 ◽  
Vol 16 (6) ◽  
pp. 967-973
Author(s):  
Shuai Zhao ◽  
Dong-Xue Lin ◽  
Yu-Xin Wang

All of the TiO2 films including intrinsic TiO2 film, Zn single doped film with 2.0 at% content and N doped films with 4.0 at%, 6.0 at%, 8.0 at% and 10.0 at% content, were obtained by butyl titanate (Ti(OC4H9)4) as a titanium source, zinc nitrate (Zn(NO3)2·6H2O) as zinc source and urea (H2 NCONH2) as nitrogen source, which was calcined at 600 °C on the glass substrate and Si substrate using sol–gel spin coating method. The structures, morphology and optical properties of various films were analyzed and studied by X ray diffract meter (XRD), ultraviolet-visible spectrophotometer (UV-Vis) and scanning electron microscope (SEM). The results indicated that the main crystal plane of TiO2 film was (101) and any impurity crystal plane didn't appear. All samples had obvious red shifts in the absorbing edge overall and reduced significantly the width of forbidden band, especially, the N doping content with 8.0 at% was surprised to investigate the strongest (101) peak intensity, the sharpest peak type, the best meritocratic orientation, the greatest red shift of the absorption spectrum, the lowest optical band gap value of 3.356 eV, and the highest utilization rate of visible light of the sample. However, the surface morphology of the others films except the N doping content with 8.0 at% is not further improved by co-doping, that is, their surfaces were still rough, had obvious voids and uneven distribution between the grains. Meanwhile, the intensity of the (101) crystalline diffraction peaks of these samples were reduced and the crystalline spacing generally increased after co-doping.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1341
Author(s):  
Qin Qin ◽  
Juan Wang ◽  
Yangwen Xia ◽  
Daixiong Yang ◽  
Qin Zhou ◽  
...  

Pure and Sn/Ni co–doped TiO2 nanomaterials with anatase/rutile mixed crystal were prepared and characterized. The results show that pure TiO2 is a mixed crystal structure composed of a large amount of anatase and a small amount of rutile. Sn doping promotes the phase transformation from anatase to rutile, while Ni doping inhibits the transformation. Both single doping and co–doping are beneficial to the inhibition of photoinduced charge recombination. Sn doping shows the best inhibitory effect on photogenerated charge recombination, and increases the utilization of visible light, displaying the highest photocatalytic activity. The decolorization degree of methylene blue (MB) by Sn–TiO2 is 79.5% after 150 min. The reaction rate constant of Sn–TiO2 is 0.01022 min−1, which is 5.6 times higher than pure TiO2 (0.00181 min–1).


2009 ◽  
Vol 105 (7) ◽  
pp. 074308 ◽  
Author(s):  
Sunandan Baruah ◽  
Sudarson Sekhar Sinha ◽  
Barnali Ghosh ◽  
Samir Kumar Pal ◽  
A. K. Raychaudhuri ◽  
...  

2018 ◽  
Vol 281 ◽  
pp. 848-853
Author(s):  
Ling Fang Qiu ◽  
Xiao Bin Qiu ◽  
Zhi Wei Zhou ◽  
Shu Wang Duo

Graphitic carbon nitride is a promising photocatalyst for environmental purification, but the photocatalytic performance is limited significantly due to its narrow visible-light adsorption and high photo-reduced electron-hole recombination rate. This work developed a novel way to overcome the two defects and obtained obvious effect. CoAPO-5 was used to broaden visible-light adsorption range by conducting g-C3N4/CoAPO-5 binary composite. In further, rGO was integrated into the binary system to form novel ternary composite. rGO performs as a electron mediator, which can inhibit photo-reduced electron-hole recombination efficiently. The samples were characterized by XRD, SEM, PL, IR and DRS. The photocatalytic performances for degrading RhB (10mg/L) indicated that g-C3N4/CoAPO-5/rGO have much higher activity than g-C3N4/CoAPO-5 because of synergistic effect. When the doping content of rGO in g-C3N4/CoAPO-5 was 0.5%, the degradation efficiency was improved by 14%.


2012 ◽  
Vol 134 (2-3) ◽  
pp. 716-720 ◽  
Author(s):  
J. Rodrigues ◽  
S.M.C. Miranda ◽  
N.F. Santos ◽  
A.J. Neves ◽  
E. Alves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document