Enhancement of static magnetic field on nitrogen removal at different ammonium concentrations in a sequencing batch reactor: Performance and biological mechanism

Chemosphere ◽  
2020 ◽  
pp. 128794
Author(s):  
Yuan-Mo Zhu ◽  
Hongmin Ji ◽  
Hongqiang Ren ◽  
Jinju Geng ◽  
Ke Xu
2020 ◽  
Vol 309 ◽  
pp. 123299 ◽  
Author(s):  
Bo Hu ◽  
Yilin Wang ◽  
Jianing Quan ◽  
Kun Huang ◽  
Xin Gu ◽  
...  

2008 ◽  
Vol 58 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Kai M. Udert ◽  
Elija Kind ◽  
Mieke Teunissen ◽  
Sarina Jenni ◽  
Tove A. Larsen

The combination of nitritation and autotrophic denitrification (anammox) in a single sequencing batch reactor (SBR) is an energy efficient process for nitrogen removal from high-strength ammonia wastewaters. So far, the process has been successfully applied to digester supernatant. However, the process could also be suitable to treat source-separated urine, which has very high ammonium and organic substrate concentrations (up to 8,200 gN/m3 and 10,000 gCOD/m3). In this study, reactor performance was tested for digester supernatant and diluted source-separated urine. Ammonium concentrations in both solutions were similar (between 611 and 642 gN/m3), thus reactor performance could be directly compared. Differences were mainly due to higher activity of heterotrophic bacteria in urine. Nitrogen removal was slightly higher for source-separated urine, because heterotrophic bacteria denitrified the nitrate that was produced by anammox bacteria. In spite of higher heterotrophic growth with source-separated urine, calculated sludge concentrations at steady state were higher with digester supernatant due to accumulation of inert particulate organic matter from the influent. Although the sludge concentrations are less problematic for source-separated urine, process instabilities are more likely, because lower pH values are reached and heterotrophic denitrification can cause sudden increases of nitrite concentrations and/or nitric oxide. Both compounds inhibit aerobic ammonium oxidizing bacteria, heterotrophic bacteria and, most importantly, anammox bacteria. Nitrite and nitric oxide production by heterotrophic denitrification must be better understood to optimize nitritation/anammox for source-separated urine.


2009 ◽  
Vol 59 (3) ◽  
pp. 573-582 ◽  
Author(s):  
Xiao-ming Li ◽  
Dong-bo Wang ◽  
Qi Yang ◽  
Wei Zheng ◽  
Jian-bin Cao ◽  
...  

It was occasionally found that a significant nitrogen loss in solution under neutral pH value in a sequencing batch reactor with a single-stage oxic process using synthetic wastewater, and then further studies were to verify the phenomenon of nitrogen loss and to investigate the pathway of nitrogen removal. The result showed that good performance of nitrogen removal was obtained in system. 0–7.28 mg L−1 ammonia, 0.08–0.38 mg L−1 nitrite and 0.94–2.12 mg L−1 nitrate were determined in effluent, respectively, when 29.85–35.65 mg L−1 ammonia was feeding as the sole nitrogen source in influent. Furthermore, a substantial nitrogen loss in solution (95% of nitrogen influent) coupled with a little gaseous nitrogen increase in off-gas (7% of nitrogen influent) was determined during a typical aerobic phase. In addition, about 322 mg nitrogen accumulation (84% of nitrogen influent) was detected in activated sludge. Based on nitrogen mass balance calculation, the unaccounted nitrogen fraction and the ratio of nitrogen accumulation in sludge/nitrogen loss in solution were 14.6 mg (3.7% of nitrogen influent) and 0.89, respectively. The facts indicated that the essential pathway of nitrogen loss in solution in this study was excess nitrogen accumulation in activated sludge.


Sign in / Sign up

Export Citation Format

Share Document