The effectiveness of PFAS management options on groundwater quality in contaminated land using numerical modelling

Chemosphere ◽  
2021 ◽  
Vol 279 ◽  
pp. 130528
Author(s):  
Reza Mahinroosta ◽  
Lalantha Senevirathna
2021 ◽  
Author(s):  
Jakob Siedersleben ◽  
Marco Schuster ◽  
Dennis Ties ◽  
Benjamin Zwick ◽  
Markus Aufleger ◽  
...  

<p>The presented work is part of the optimization of the sediment management at the hydroelectric powerplants in Reutte/Höfen in Austria. The weirs of the two powerplants are situated at the alpine river Lech, located about 3 km upstream of the Lechaschau gauge (A=1012.2 km²). Totally five sluice gates and a fixed overflow weir are controlling the upstream reservoir, being subjected to high rates of coarse bed load material. In frame of a coupled approach of physical and numerical modelling, different options to (i) avoid/minimize sediment deposition and (ii) allow improved sediment flushing were tested and optimized. Besides a lowering of energy losses (reduced spilling times) the reduction of depositions downstream close to the turbine outlet were considered.</p><p>The physical model covers the hydropower and weir system of both power plants within a stretch of 400m / 150m using a model scale of 1:25. Investigated situations covered periods of reservoir sedimentation, flushing of the reservoir and typical flood flow situations (e.g. HQ1 and an unsteady HQ5 event). For model parametrization, sediment samples to quantify size distribution were taken in the field. Sediment inputs to the model were realized dynamically and were required (due to scaling effects) to exclude cohesive fractions having a minimum particle size of 0.5 mm. The full-area surface measurement of the river bed was made by means of airborne laser bathymetry and echo sounding.</p><p>As part of an optimization of the overall sediment management strategy, the focus of the presented research is on the western located runoff power plant Höfen. Via a lateral water intake, a maximum design flow of 15 m³/s is withdrawn causing that the intake structure is subjected to sediment depositions. Within the described scale model (1:25) and a partial scale model (1:15) covering the western side, several management options and configurations of sediment guiding walls were tested. Erosion and deposition as well as the transported material are assessed by 3D laser scanning and permanent monitoring of transported sediment load entering and leaving the scale model.</p><p>Complementary, a 2D hydro numerical model using a layer based multi fraction approach for sediment transport is set up for an extended area to simulate the morpho-dynamic behavior. The numerical model covers the whole weir system and 750 m of the upstream part of the Lech. The simulations made were realized at nature scale and allowed to mimic the erosion and deposition pattern obtained within the physical modelling for different tested options. Regardless of a chosen guiding wall setup, the results showed that each one is compromise between sediment defense and the effectiveness of the subsequent flushing processes.</p>


2004 ◽  
Vol 330 (1-3) ◽  
pp. 9-20 ◽  
Author(s):  
P HANKARD ◽  
C SVENDSEN ◽  
J WRIGHT ◽  
C WIENBERG ◽  
S FISHWICK ◽  
...  

Soil Research ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1407 ◽  
Author(s):  
W. R. Dawes ◽  
M. Gilfedder ◽  
M. Stauffacher ◽  
J. Coram ◽  
S. Hajkowicz ◽  
...  

The emerging paradigm to manage the spread of dryland salinity is the manipulation of farming practice to provide both a reduction in recharge and a commercial return to farm enterprises. Recent work has attempted to classify the groundwater systems across Australia into distinct provinces, with the implication that the flow processes, and therefore remediation strategies, of catchments within each province are similar. This paper presents a case study of the Wanilla catchment on the Eyre Peninsula in South Australia. This catchment is in the groundwater province that includes 60% of the dryland salinity expression in Australia. The results of conceptual and numerical modelling of the catchment suggest that the land management for reduced recharge paradigm may be less effective in this groundwater province than in others. The scale of expression and salinity history of such catchments provides further impediments to management options aimed at controlling or reversing existing dryland salinity.


2017 ◽  
Vol 187 ◽  
pp. 273-292 ◽  
Author(s):  
Saeed Shaeri ◽  
Rodger Tomlinson ◽  
Amir Etemad-Shahidi ◽  
Darrell Strauss

Sign in / Sign up

Export Citation Format

Share Document