Novel micro-granular sludge process for highly efficient treatment of low-strength and low C/N ratio municipal wastewater

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132322
Author(s):  
Boran Wu ◽  
Xiuzhong Wang ◽  
Chengxian Wang ◽  
Bin Lu ◽  
Jing Yi ◽  
...  
2015 ◽  
Vol 2015 (17) ◽  
pp. 5656-5665
Author(s):  
Belinda Sturm ◽  
Rasha Faraj ◽  
Theresa Amante ◽  
Brett Wagner ◽  
Farshid Kiani ◽  
...  

1992 ◽  
Vol 25 (1) ◽  
pp. 83-92
Author(s):  
Pentti Väänänen ◽  
Pekka Pouttu ◽  
Timo Kulmala

The National Board of Waters in Finland has proposed a study on the joint treatment of industrial and municipal wastewaters of the City of Kotka. This study is of great interest due to the large forest products industry and food industry in Kotka. All of the wastewaters from the forest products and the food industry and the municipal sewage have been found to be suitable for biological treatment, which makes the joint treatment applicable. An activated sludge process is selected because it takes advantage of the large amount of nutrients in the municipal sewage and it has proved to be the most efficient treatment method for forest industry wastewaters. However, municipal wastewater contains more nutrients than needed for the biological process, which can cause eutrophication problems in the watercourse. To reduce the pollution caused by the nutrients, chemical treatment of the wastewater is also proposed in the joint treatment. It was concluded that the joint treatment of wastewater is economically, technically and environmentally the best way to arrange wastewater treatment for the industry and the city.


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
W. Yoochatchaval ◽  
K. Kubota ◽  
T. Kawai ◽  
T. Yamaguchi ◽  
K. Syutsubo

To investigate the feasibility of anaerobic wastewater treatment technology for low strength sugar refinery wastewater (0.4 - 0.5 g COD/L), an 8.8 L volume of anaerobic granular sludge bed reactor was operated at 20°C for 400 days. The operation mode was combination of one pass flow (UASB, 50 min) and effluent-recirculation (EGSB, 10 min) mode. The aerobic down-flow hanging sponge (DHS) reactor was installed as a post-treatment. During the started-up period, reactors were fed with synthetic wastewater at overall HRT of 3 hours (anaerobic 2 hours, aerobic 1 hour). After day 85, feed was changed to real wastewater together with supplement of nutrients, trace elements and NaHCO3. The sufficient COD removal efficiency (85% SD±6.2) and stable process performance were elicited from the granular sludge bed reactor.Also, post-treatment (DHS reactor) offered good quality of effluent (45 mg COD/L, 7 mg BOD/L) and it achieved the discharge standard. Increasing of sulfate concentration of wastewater caused higher contribution of sulfate reducing bacteria for COD removal. The sludge concentration and settleability were well maintained thoroughly. However, floatation of large size granule was observed in the later part of experiment. This phenomenon may attribute to the high growth yield of retained sludge at 20°C.


2014 ◽  
Vol 69 (11) ◽  
pp. 2252-2257 ◽  
Author(s):  
Hasnida Harun ◽  
Aznah Nor Anuar ◽  
Zaini Ujang ◽  
Noor Hasyimah Rosman ◽  
Inawati Othman

Aerobic granular sludge (AGS) has been applied to treat a broad range of industrial and municipal wastewater. AGS can be developed in a sequencing batch reactor (SBR) with alternating anaerobic–aerobic conditions. To provide anaerobic conditions, the mixed liquor is allowed to circulate in the reactor without air supply. The circulation flow rate of mixed liquor in anaerobic condition is the most important parameter of operation in the anaerobic-AGS processes. Therefore, this study investigates the effect of circulation rate on the performance of the SBR with AGS. Two identical reactors namely R1 and R2 were operated using fermented soy sauce wastewater at circulation rate of 14.4 and 36.0 l/h, respectively. During the anaerobic conditions, the wastewater was pumped out from the upper part of the reactor and circulated back into the bottom of the reactor for 230 min. A compact and dense AGS was observed in both reactors with a similar diameter of 2.0 mm in average, although different circulation rates were adopted. The best reactor performance was achieved in R2 with chemical oxygen demand removal rate of 89%, 90% total phosphorus removal, 79% ammonia removal, 10.1 g/l of mixed liquor suspended solids and a sludge volume index of 25 ml/g.


2019 ◽  
Author(s):  
◽  
Liyuan Hou

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Anaerobic treatment is a promising and energy saving process for low-strength wastewater treatment. Roles of half saturation constant (Ks) and maximum specific growth rate (umax) in anaerobic treatment systems, however, are often overlooked. This study proposed to apply specific affinity (defined as umax/ Ks) as the key performance indicator of anaerobic processes treating low-strength wastewater. Furthermore, this study provided a new insight into the relationship between specific affinity and population of methanogens in an anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. High abundance of Methanosaeta (85.8% of total archaea) was linked to the high specific affinity (1.6 x 10[superscript -3] L/mg COD/d) in acclimated anaerobic sludge, resulting in low effluent chemical oxygen demand (COD) concentrations. Short hydraulic retention times (HRTs) are preferred for AnMBRs to treat low strength wastewater at a high volumetric organic loading rate with lower capital costs. However, short HRTs become a potential bottleneck in anaerobic treatment processes because of possible interspecies mass transfer limitations and membrane fouling in AnMBRs. Till now, little is known about how short HRTs would affect effluent water quality that is linked to the specific affinity of anaerobic sludge and their microbial community structures in AnMBRs. In current study, the overall performance, specific affinity of anaerobic sludge, and dynamics of community structures of an AnMBR treating synthetic municipal wastewater at decreasing HRTs (i.e., 24 h, 12 h, and 6 h) was investigated. A decrease in HRT resulted in sludge with high specific affinity. Correspondingly, Methanosaeta became the dominant methanogens in the AnMBR. Both the effluent water quality and methane yield were enhanced. Municipal wastewater contains complex organic constituents while multi-step biochemical processes are involved in anaerobic treatment processes. Two identical AnMBR were operated under decreasing HRTs (24 h, 12 h, and 6 h, respectively) treating low strength wastewater containing different substrate (acetate or glucose, respectively). As a result, microbial communities in the two AnMBRs diverged. The effluent quality and methane yield were enhanced in the acetate fed AnMBR while methane yield decreased in the glucose fed AnMBR as HRT decreased. Correspondingly, the abundance of Methanosaetaceae in the acetate fed AnMBR increased, but it decreased in the AnMBR fed with glucose. Interestingly, hydrogenotrophic methanogens have a higher proportion in the glucose fed AnMBR than in the acetate fed AnMBR. Overall, a minimum HRT higher than 6 h may be required to treat wastewater containing complex organic matter to ensure a successful operation. To treat the sulfate-containing low-strength wastewater, we proposed a newly designed anaerobic microbial fuel cell (MFC) system that could be used to produce electricity and remove sulfate simultaneously. A maximum voltage output of 129 mV was observed under the following feed conditions: that the ratio of lactate: sulfate was 60:20 and 0:10 in the anodic chamber and cathodic chamber, respectively. The decrease in the organic substrate/sulfate ratio in anodic chamber had a great effect on the electricity production, which could be resulted from an increasing DvH attaching on the electrode at a higher sulfate concertation contributes more electrons transfer. However, there was no significant electricity production at the ratio of two presumably because sulfate in the anodic chamber obtained all electrons produced by lactate without transferring to cathodic chamber since the stoichiometric ratio of lactate and sulfate is two. To our knowledge, this was the first time to show the electricity generation by using Desulfovibrio vulgaris Hildenborough (DvH) in such a MFC configuration. Electron microscopic analysis indicated that nanoscale filaments could enhance the extracellular electron transfer of DvH. DvH biofilm, which is necessary for extracellular electron transfer, suggesting that DvH has multiple direct electron transfer mechanisms. This could further benefit the application of DvH to enhance the power output and treat the real sulfate-containing low-strength wastewater.


Sign in / Sign up

Export Citation Format

Share Document