Products distribution and hazardous elements migration during pyrolysis of oily sludge from the oil refining process

Chemosphere ◽  
2022 ◽  
Vol 288 ◽  
pp. 132524
Author(s):  
Gan Wan ◽  
Lei Bei ◽  
Jie Yu ◽  
Linlin Xu ◽  
Lushi Sun
Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 292 ◽  
Author(s):  
Paolo Lucci ◽  
Valentina Bertoz ◽  
Deborah Pacetti ◽  
Sabrina Moret ◽  
Lanfranco Conte

The impact of the olive oil refining process on major antioxidant compound levels was evaluated by means of UHPLC analysis of lampante olive oils collected at different stages of the refining procedure (degumming, chemical and physical flash neutralization, bleaching, and deodorization). For this purpose, the evolution of the tocopherol fraction was investigated by means of the UHPLC-FL method, while the influence of the refining process on the total hydrolyzed phenolic content was assessed by measuring hydroxytyrosol and tyrosol levels after acid hydrolysis of the phenolic extracts. Refining was found to have a marked effect on total hydroxytyrosol and tyrosol contents, as they are completely removed in the early steps of the refining procedure. In contrast, the variation trends of tocopherols are not always clear-cut, and significant decreases in content from 7% to 16% were only revealed during refining in four out of nine samples. In addition, five of the nine refined oils showed final tocopherol concentrations higher than 200 mg/kg, the limit imposed by international standards regarding the content of such compounds in commercial olive oils. This study supports the need for a revision of the International Olive Oil Council (IOC) standard relative to the limit established for tocopherol addition to refined oils to avoid possible legal and economic trade issues.


2002 ◽  
Vol 79 (10) ◽  
pp. 947-953 ◽  
Author(s):  
T. Verleyen ◽  
U. Sosinska ◽  
S. Ioannidou ◽  
R. Verhe ◽  
K. Dewettinck ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yuxiang Ma ◽  
Longkai Shi ◽  
Yulan Liu ◽  
Qiyu Lu

The influence of technological operations during oil refining process on polycyclic aromatic hydrocarbons (PAHs) in neutralized, bleached, and deodorized oils was investigated on the basis of laboratory-scale study. Under the best experimental conditions, benzo[a]pyrene decreased by 85.1%, 99.7%, and 40.8% in neutralized, bleached, and deodorized oils, respectively. Total of 16 analytes decreased by 55.7%, 87.5%, and 47.7%, respectively. Bleaching with activated charcoal was the most efficient procedure to reduce PAHs in crude oil. Neutralization had a modest influence on sixteen analytes; however, deodorization was only responsible for a slight decrease in the light PAHs and heavy PAHs contents. Data obtained in this study suggest that the use of activated carbon during oil refining process is highly recommended; moreover, these results provide a useful guidance for oil refining plant to reduce security risk and ensure the quality of the vegetable oil products.


2021 ◽  
Author(s):  
Milan Kambič

The base of the final product is the base oil. The final product is ready for use and is a mixture of base oil (or several base oils) and additives. Additives improve the properties of the base oil. Base oils can be mineral or synthetic based. Base oils or base stocks are created from separating and cleaning up crude oil. They are one of several liquid components that are created from crude oil. The crude oil refining process will be briefly described. The American Petroleum Institute implemented a system for describing various base oil types. The result was the development and introduction of base oils group numbers. The API numbers of various base oil groups and the main differences between them will be explained. At the end, premium quality hydraulic oil and its main characteristics will be presented.


2012 ◽  
Vol 77 ◽  
pp. 53-58 ◽  
Author(s):  
Ivaldo I. Junior ◽  
Marcela C. Flores ◽  
Felipe K. Sutili ◽  
Selma G.F. Leite ◽  
Leandro S. de M. e Miranda ◽  
...  

2015 ◽  
Vol 1107 ◽  
pp. 335-340 ◽  
Author(s):  
Nurasmat Mohd Shukri ◽  
Jafariah Jaafar ◽  
Wan Azelee Wan Abu Bakar ◽  
Zaiton Abdul Majid

An increasing interest in acidic fractions in crude oil was prompted by the corrosion problems that these compounds caused during oil refining process. This corrosion is associated with the total acid number (TAN). With the anticipated growth of acidic crudes in the market, a new technology for removal of the acidic fractions was introduced. Petronas Penapisan Melaka Light Crude (B) with TAN values of 2.52 was studied. The ammoniated polyethylene glycol (PEG) was used as the deacidifying agent in this study with a concentration range of 100-2500 mg/L. Data indicated that the optimal content of ammoniated polyethylene glycol in crude B was 1500 mg/L, and PEG with molecular weight of 2000 was the most promising co-solvent with the reagent/oil ratio being 0.4:1 (wt/wt). A reaction time of 5 min with a suitable reaction temperature of 40°C and optimal stirring time of 5 min were sufficient to achieve the goal for crude oil B. The TAN was lowered to 0.28 for crude oil B. The percentage of acid removal for crude B was 78. An increase in the concentration of basic chemical reduced the TAN value for crude oil B to less than 1.


Sign in / Sign up

Export Citation Format

Share Document