total acid number
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.


Fuel ◽  
2021 ◽  
pp. 122522
Author(s):  
Hayane A. Fernandes ◽  
Luana N. Zanelato ◽  
Paulo A.P. Decote ◽  
Hélisson N. Santos ◽  
Caroline M. Senger ◽  
...  

Fuel ◽  
2021 ◽  
pp. 122642
Author(s):  
Paulo A.P. Decote ◽  
Luana Negris ◽  
Amanda P. Vidoto ◽  
Luiz A.N. Mendes ◽  
Erico M.M. Flores ◽  
...  

2021 ◽  
Author(s):  
Ahmed Almadhaji ◽  
Mohammed Saeed ◽  
Hitham Ibrahim ◽  
Anas Ahmed ◽  
Ragaei Maher

Abstract One of Sudanese fields has a heavy crude oil which has a high Total Acid Number (TAN) and high viscosity, can cause a lot of problems in production operation, transport, and storage facilities. The effect of ethanol dilution on the rheological properties of crude (especially the kinematic viscosity) was studied and presented. Moreover, the consequence of blending Trona (NaHCO3.Na2CO3) with a specified amount of Ethanol in the crude can reduce (TAN) to acceptable limits for solving corrosion and flowability problems. The approach is based on the experiments and laboratory works on the crude's samples after blending with a certain amount of Trona and Ethanol. It depends on the results of apparatuses, that are used to measure the samples, for instance, Calibrated glass capillary viscometer and ASTM D664 titration volume Total Acid Number tester which are employed to get the values of kinematic viscosity and TAN, respectively. The tests are established with crude have kinematic viscosity (187 cst) at temperature 75°C and TAN almost (8.51). While increasing the dosage of Trona at the ambient temperature (38°C) with the certain mass percentage of Ethanol (5%), TAN is decreased from (8.51 to 4.00 mgKOH/g). Also, the kinematic viscosity is declined from (187 cst to 96.75 cst) after increasing the volume of Ethanol at 75°C. These outcomes indicated that Ethanol could reduce Sudanese heavy crude's viscosity, and the Trona could decrease the TAN. This reduction occurred due to Ethanol dilution. The Ethanol molecules disturb the molecular structure of the crude, which forms polar bond within the hydrocarbon chain that leads to lower the friction between molecules of hydrocarbon in the crude. Also, Trona shrinks TAN because the Hydroxide ions (OH+) that founded in Trona neutralize the Hydrogen ions (H−) in Naphthenic acid in Sudanese heavy crude. This study can be summarized in the ability to solve the difficulty of transporting and processing the heavy crude oil in refineries; maintains the quality of the crude while utilizing it with friendly environmental materials and low cost.


2021 ◽  
Vol 10 (4) ◽  
pp. 747-754
Author(s):  
Sri Kadarwati ◽  
Evalisa Apriliani ◽  
Riska Nurfirda Annisa ◽  
Jumaeri Jumaeri ◽  
Edy Cahyono ◽  
...  

The bio-oil produced from pyrolysis of woody biomass typically shows unfavourable characteristics such as high acidity, hence it becomes highly corrosive. An upgrading process, e.g., esterification, is necessary to improve the bio-oil quality prior to its use as a transportation fuel. In this work, the bio-oil was produced through a fast pyrolysis of Sengon wood in a fixed-bed pyrolyser at various temperatures. The characteristics (density, viscosity, total acid number, relative concentration of acetic acid, etc.) of the bio-oil were evaluated. The bio-oil with the highest acidity underwent an esterification catalysed by Indonesian natural zeolites at 70 oC for 0-180 min with a ratio of bio-oil to methanol of 1:3. The catalytic performance of the Indonesian natural zeolites during the esterification was investigated. A significant decrease in the total acid number in the bio-oil was observed, indicating the zeolite catalyst’s good performance. No significant coke formation (0.002-3.704 wt.%) was obtained during the esterification. An interesting phenomenon was observed; a significant decrease in the total acid number was found in the heating up of the bio-oil in the presence of the catalyst but in the absence of methanol. Possibly, other reactions catalysed by the Brønsted and Lewis acids at the zeolite catalyst surface also occurred during the esterification.


2021 ◽  
Vol 1025 ◽  
pp. 337-342
Author(s):  
Noraini Safar Che Harun ◽  
Norshahidatul Akmar Mohd Shohaimi ◽  
Shaari Daud

The Naphthenic Acid (NA) found in the acidic crude oil is one of the main challenges that can lead to corrosion problem in oil refinery equipment and reduces the quality of the oil. In this study, catalytic neutralization reaction was investigated in order to lowering Total Acid Number (TAN) in crude oil to less than one mg KOH/g utilizing 2-Methylimidazole in Polyethylene Glycol (PEG) with aid of Ca/Al2O3 catalyst. The catalyst were supported on the alumina beads through Incipient Wetness Impregnation (IWI) methods and heated in an oven for 24 hours at 80-90°C then calcined at calcination temperatures of 800, 900 and 1000°C. The result showed that Ca/Al2O3 catalyst successfully reduced to 0.52 mg KOH/g from original TAN value 4.22 mg KOH/g by using a catalyst at calcination temperature 1000°C, 0.39 wt % (7 beads) of catalyst loading and 1000 ppm of 2-Methylimidazole in PEG. It can be concluded that catalytic deacidification method was effective method in reducing NAs from the crude oil and can lowered the TAN value to less than 1 mg KOH/g.


2020 ◽  
Vol 606 ◽  
pp. 117835
Author(s):  
Kanghee Cho ◽  
Bharat Singh Rana ◽  
Dong-Woo Cho ◽  
Hee Tae Beum ◽  
Cheol-Hyun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document