scholarly journals Non-specific degradation of chloroacetanilide herbicides by glucose oxidase supported Bio-Fenton reaction

Chemosphere ◽  
2021 ◽  
pp. 133417
Author(s):  
Youri Yang ◽  
Sunil Ghatge ◽  
Yongseok Ko ◽  
Younggun Yoon ◽  
Jae-Hyung Ahn ◽  
...  
2019 ◽  
Vol 31 (1) ◽  
pp. 015101 ◽  
Author(s):  
Keke Du ◽  
Qianqian Liu ◽  
Mei Liu ◽  
Rongmu Lv ◽  
Nongyue He ◽  
...  

2020 ◽  
Vol 103 (9) ◽  
pp. 7826-7833
Author(s):  
Suhua Wang ◽  
Bolong Fang ◽  
Meifang Yuan ◽  
Zexiang Wang ◽  
Juan Peng ◽  
...  

1991 ◽  
Vol 260 (4) ◽  
pp. G556-G563 ◽  
Author(s):  
H. Hiraishi ◽  
A. Terano ◽  
S. Ota ◽  
H. Mutoh ◽  
M. Razandi ◽  
...  

The gastric epithelium is exposed to oxygen species that are generated within the lumen. Reactive oxygen species, enzymatically generated, cause injury to cultured rat gastric mucosal cells. Much interest has been focused on the role of iron in producing oxidant-mediated injury to the gastric mucosa, because iron is a catalyst that promotes the production of .OH possibly from O2-. and H2O2 (Haber-Weiss reaction) or from H2O2 alone (Fenton reaction). With the use of an iron chelator and an iron binding protein, we examined the role of iron in producing oxidant-mediated injury to cultured gastric mucosal cells. Reactive oxygen species and H2O2 were generated by hypoxanthine-xanthine oxidase and glucose-glucose oxidase, respectively, in buffer without iron. Pretreatment with deferoxamine diminished hypoxanthine-xanthine oxidase-induced 51Cr release from prelabeled cells, dose dependently. Furthermore, addition of deferoxamine to the reactive oxygen species-generating system also protected against the injury. However, apotransferrin (which binds extracellular iron) failed to protect cells. Pretreatment with .OH scavengers was partially protective. Depletion of glutathione with diethyl maleate enhanced reactive oxygen species-mediated cytolysis; such cytolysis was inhibited by deferoxamine. Deferoxamine also decreased 51Cr release induced by glucose-glucose oxidase. We conclude that intracellular iron plays a crucial role in mediating oxygen radical damage to gastric mucosal cells. The .OH, produced from H2O2 by the iron-catalyzed Fenton reaction, seems to be the main mediator of oxidant-induced cytotoxicity to gastric mucosal cells in vitro.


2018 ◽  
Author(s):  
Danilo Carmona ◽  
David Contreras ◽  
Oscar A. Douglas-Gallardo ◽  
Stefan Vogt-Geisse ◽  
Pablo Jaque ◽  
...  

The Fenton reaction plays a central role in many chemical and biological processes and has various applications as e.g. water remediation. The reaction consists of the iron-catalyzed homolytic cleavage of the oxygen-oxygen bond in the hydrogen peroxide molecule and the reduction of the hydroxyl radical. Here, we study these two elementary steps with high-level ab-initio calculations at the complete basis set limit and address the performance of different DFT methods following a specific classification based on the Jacob´s ladder in combination with various Pople's basis sets. Ab-initio calculations at the complete basis set limit are in agreement to experimental reference data and identified a significant contribution of the electron correlation energy to the bond dissociation energy (BDE) of the oxygen-oxygen bond in hydrogen peroxide and the electron affinity (EA) of the hydroxyl radical. The studied DFT methods were able to reproduce the ab-initio reference values, although no functional was particularly better for both reactions. The inclusion of HF exchange in the DFT functionals lead in most cases to larger deviations, which might be related to the poor description of the two reactions by the HF method. Considering the computational cost, DFT methods provide better BDE and EA values than HF and post--HF methods with an almost MP2 or CCSD level of accuracy. However, no systematic general prediction of the error based on the employed functional could be established and no systematic improvement with increasing the size in the Pople's basis set was found, although for BDE values certain systematic basis set dependence was observed. Moreover, the quality of the hydrogen peroxide, hydroxyl radical and hydroxyl anion structures obtained from these functionals was compared to experimental reference data. In general, bond lengths were well reproduced and the error in the angles were between one and two degrees with some systematic trend with the basis sets. From our results we conclude that DFT methods present a computationally less expensive alternative to describe the two elementary steps of the Fenton reaction. However, choice of approximated functionals and basis sets must be carefully done and the provided benchmark allows a systematic validation of the electronic structure method to be employed


Sign in / Sign up

Export Citation Format

Share Document