Modeling of the static batch desorption and dynamic column elution of geniposidic acid from a porous anion-exchanger

2019 ◽  
Vol 1594 ◽  
pp. 1-12
Author(s):  
Wenbin Qian ◽  
Juan Wang ◽  
Hanjing Ding ◽  
Wenjing Xie
2011 ◽  
Vol 49 (10) ◽  
Author(s):  
S Lissner ◽  
L Nold ◽  
CJ Hsieh ◽  
JR Turner ◽  
M Gregor ◽  
...  

PEDIATRICS ◽  
2003 ◽  
Vol 112 (6) ◽  
pp. 1361-1367 ◽  
Author(s):  
L. Cheidde ◽  
T. C. Vieira ◽  
P. R. M. Lima ◽  
S. T. O. Saad ◽  
I. P. Heilberg

2021 ◽  
Vol 1913 (1) ◽  
pp. 012076
Author(s):  
Prasanna S Koujalagi ◽  
Harish N Revankar ◽  
Raviraj M Kulkarni ◽  
Vijayendra R Gurjar

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1401
Author(s):  
Larisa Lvova ◽  
Donato Monti ◽  
Corrado Di Natale ◽  
Roberto Paolesse

The metalloporphyrin ligand bearing incorporated anion-exchanger fragment, 5-[4-(3-trimethylammonium)propyloxyphenyl]-10,15,20-triphenylporphyrinate of Co(II) chloride, CoTPP-N, has been tested as anion-selective ionophore in PVC-based solvent polymeric membrane sensors. A plausible sensor working mechanism includes the axial coordination of the target anion on ionophore metal center followed by the formed complex aggregation with the second ionophore molecule through positively charged anion-exchanger fragment. The UV-visible spectroscopic studies in solution have revealed that the analyte concentration increase induces the J-type porphyrin aggregation. Polymeric membranes doped with CoTPP-N showed close to the theoretical Nernstian response toward nitrite ion, preferably coordinated by the ionophore, and were dependent on the presence of additional membrane-active components (lipophilic ionic sites and ionophore) in the membrane phase. The resulting selectivity was a subject of specific interaction and/or steric factors. Moreover, it was demonstrated theoretically and confirmed experimentally that the selection of a proper ratio of ionophore and anionic additive can optimize the sensor selectivity and lifetime.


Chemosensors ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Ville Yrjänä ◽  
Indrek Saar ◽  
Mihkel Ilisson ◽  
Sandip A. Kadam ◽  
Ivo Leito ◽  
...  

Solid-contact ion-selective electrodes with carbazole-derived ionophores were prepared. They were characterized as acetate sensors, but can be used to determine a number of carboxylates. The potentiometric response characteristics (slope, detection limit, selectivity, and pH sensitivity) of sensors prepared with different membrane compositions (ionophore, ionophore concentration, anion exchanger concentration, and plasticizer) were evaluated. The results show that for the macrocyclic ionophores, a larger cavity provided better selectivity. The sensors exhibited modest selectivity for acetate but good selectivity for benzoate. The carbazole-derived ionophores effectively decreased the interference from lipophilic anions, such as bromide, nitrate, iodide, and thiocyanate. The selectivity, detection limit, and linear range were improved by choosing a suitable plasticizer and by reducing the ionophore and anion exchanger concentrations. The influence of the electrode body’s material upon the composition of the plasticized poly(vinyl chloride) membrane, and thus also upon the sensor characteristics, was also studied. The choice of materials for the electrode body significantly affected the characteristics of the sensors.


Sign in / Sign up

Export Citation Format

Share Document