Global retention models and their application to the prediction of chromatographic fingerprints

2021 ◽  
Vol 1637 ◽  
pp. 461845
Author(s):  
A. Gisbert-Alonso ◽  
J.A. Navarro-Huerta ◽  
J.R. Torres-Lapasió ◽  
M.C. García-Alvarez-Coque
2020 ◽  
Vol 16 (3) ◽  
pp. 303-311
Author(s):  
Qi Huang ◽  
Chunsong Cheng ◽  
Lili Li ◽  
Daiyin Peng ◽  
Cun Zhang

Background: Scutellariae Radix (Huangqin) is commonly processed into 3 products for different clinical applications. However, a simple analytical method for quality control has rarely been reported to quickly estimate the degree of processing Huangqin or distinguish differently processed products or unqualified Huangqin products. Objective: To study a new strategy for quality control in the processing practice of Huangqin. Methods: Seven kinds of flavonoids that mainly exist in Huangqin were determined by HPLC-DAD. Chromatographic fingerprints were established to study the variation and discipline of the 3 processed products of Huangqin. PCA and OPLS-DA were used to classify differently processed products of Huangqin. Results: The results showed that baicalin and wogonoside were the main components in the crude and the alcohol Huangqin herb while baicalein and wogonin mainly existed in carbonized Huangqin. The results of mathematical statistics revealed that the processing techniques can make the quality of medicinal materials more uniform. Conclusion: This multivariate monitoring strategy is suitable for quality control in the processing of Huangqin.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3371
Author(s):  
Chao-Qun Wang ◽  
Li-Wei Yi ◽  
Lin Zhao ◽  
Yu-Zhen Zhou ◽  
Fang Guo ◽  
...  

Wild ginseng (W-GS), ginseng under forest (F-GS, planted in mountain forest and growing in natural environment), and cultivated ginseng (C-GS) were compared via HPLC-DAD and HPLC-IT-TOF-MSn. A total of 199 saponins, including 16 potential new compounds, were tentatively identified from 100 mg W-GS (177 saponins in W-GS with 11 new compounds), F-GS (56 saponins with 1 new compound), and C-GS (60 saponins with 6 new compounds). There were 21 saponins detected from all the W-GS, F-GS, and C-GS. Fifty saponins were only detected from W-GS, including 23 saponins found in ginseng for the first time. Contents of ginsenosides Re (12.36–13.91 mg/g), Rh1 (7.46–7.65 mg/g), Rd (12.94–12.98 mg/g), and the total contents (50.52–55.51 mg/g) of Rg1, Re, Rf, Rb1, Rg2, Rh1, and Rd in W-GS were remarkably higher than those in F-GS (Re 1.22–3.50 mg/g, Rh1 0.15–1.49 mg/g, Rd 0.19–1.49 mg/g, total 5.69–18.74 mg/g), and C-GS (Re 0.30–3.45 mg/g, Rh1 0.05–3.42 mg/g, Rd 0.17–1.68 mg/g, total 2.99–19.55 mg/g). Contents of Re and Rf were significantly higher in F-GS than those in C-GS (p < 0.05). Using the contents of Re, Rf, or Rb1, approximately a half number of cultivated ginseng samples could be identified from ginseng under forest. Contents of Rg1, Re, Rg2, Rh1, as well as the total contents of the seven ginsenosides were highest in ginseng older than 15 years, middle–high in ginseng between 10 to 15 years old, and lowest in ginseng younger than 10 years. Contents of Rg1, Re, Rf, Rb1, Rg2, and the total of seven ginsenosides were significantly related to the growing ages of ginseng (p < 0.10). Similarities of chromatographic fingerprints to W-GS were significantly higher (p < 0.05) for F-GS (median: 0.824) than C-GS (median: 0.745). A characteristic peak pattern in fingerprint was also discovered for distinguishing three types of ginseng. Conclusively, wild ginseng was remarkably superior to ginseng under forest and cultivated ginseng, with ginseng under forest slightly closer to wild ginseng than cultivated ginseng. The differences among wild ginseng, ginseng under forest, and cultivated ginseng in saponin compositions and contents of ginsenosides were mainly attributed to their growing ages.


2021 ◽  
pp. 154596832110010
Author(s):  
Margaret A. French ◽  
Matthew L. Cohen ◽  
Ryan T. Pohlig ◽  
Darcy S. Reisman

Background There is significant variability in poststroke locomotor learning that is poorly understood and affects individual responses to rehabilitation interventions. Cognitive abilities relate to upper extremity motor learning in neurologically intact adults, but have not been studied in poststroke locomotor learning. Objective To understand the relationship between locomotor learning and retention and cognition after stroke. Methods Participants with chronic (>6 months) stroke participated in 3 testing sessions. During the first session, participants walked on a treadmill and learned a new walking pattern through visual feedback about their step length. During the second session, participants walked on a treadmill and 24-hour retention was assessed. Physical and cognitive tests, including the Fugl-Meyer-Lower Extremity (FM-LE), Fluid Cognition Composite Score (FCCS) from the NIH Toolbox -Cognition Battery, and Spatial Addition from the Wechsler Memory Scale-IV, were completed in the third session. Two sequential regression models were completed: one with learning and one with retention as the dependent variables. Age, physical impairment (ie, FM-LE), and cognitive measures (ie, FCCS and Spatial Addition) were the independent variables. Results Forty-nine and 34 participants were included in the learning and retention models, respectively. After accounting for age and FM-LE, cognitive measures explained a significant portion of variability in learning ( R2 = 0.17, P = .008; overall model R2 = 0.31, P = .002) and retention (Δ R2 = 0.17, P = .023; overall model R2 = 0.44, P = .002). Conclusions Cognitive abilities appear to be an important factor for understanding locomotor learning and retention after stroke. This has significant implications for incorporating locomotor learning principles into the development of personalized rehabilitation interventions after stroke.


2017 ◽  
Vol 593-594 ◽  
pp. 508-522 ◽  
Author(s):  
J.J. González Costa ◽  
M.J. Reigosa ◽  
J.M. Matías ◽  
E.F. Covelo

2021 ◽  
Vol 11 (15) ◽  
pp. 7106
Author(s):  
Miaotian Sun ◽  
Zeynep Ülker ◽  
Zhixing Chen ◽  
Sivaraman Deeptanshu ◽  
Monika Johannsen ◽  
...  

The retention factor is the key quantity for the thermodynamic analysis of the retention mechanism in chromatographic experiments. In this work, we measure retention factors for moderately polar solutes on four silica-based porous matrices as stationary phases by supercritical fluid chromatography. Elution of the solutes is only possible with binary mixtures of supercritical carbon dioxide (sc-CO2) and modifier (methanol) due to the low polarity of pure sc-CO2. The addition of modifiers makes the retention mechanism more complex and masks interactions between solute and stationary phase. In this work, we develop and validate several retention models that allow the obtaining of retention factors in modifier-free sc-CO2. Such models pave the way for quantifying adsorption interactions between polar solutes and non-swellable porous matrices in pure sc-CO2 based on retention data obtained in sc-CO2/modifier mixtures. The obtained information will thereby facilitate the understanding and design of impregnation processes, which are often performed in modifier-free conditions.


2006 ◽  
Vol 572 (2) ◽  
pp. 265-271 ◽  
Author(s):  
Fan Gong ◽  
Bo-Tang Wang ◽  
Yi-Zeng Liang ◽  
Foo-Tim Chau ◽  
Ying-Sing Fung

2021 ◽  
Author(s):  
Hamed Khorasani ◽  
Zhenduo Zhu

&lt;p&gt;Phosphorus (P) is the key and limiting nutrient in the eutrophication of freshwater resources. Modeling P retention in lakes using steady-state mass balance models (i.e. Vollenweider-type models) provides insights into the lake P management and a simple method for large-scale assessments of P in lakes. One of the basic problems in the mass balance modeling of P in lakes is the removal of P from the lake water column by settling. A fraction of the incoming P into the lake from the watershed is associated with fast-settling particles (e.g. sediment particles) that result in the removal of that fraction of P quickly at the lake entrance. However, existing models considering a constant fraction of fast-settling TP for all lakes are shown to result in overestimation of the retention of P in lakes with short hydraulic residence time. In this study, we combine a hypothesis of the fast- and slow-settling P fractions into the steady-state mass balance models of P retention in lakes. We use a large database of lakes to calibrate the model and evaluate the hypothesis. The results of this work can be used for the improvement of the prediction power of P retention models in lakes and help to better understand the processes of P cycling in lakes.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document