A systematic strategy for uncovering quality marker of Asari Radix et Rhizoma on alleviating inflammation based chemometrics analysis of components

2021 ◽  
pp. 461960
Author(s):  
Yiwen Zhang ◽  
Saiyu Li ◽  
Yuting Liang ◽  
Ran Liu ◽  
Xinyan Lv ◽  
...  
Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
A Booker ◽  
D Frommenwiler ◽  
D Johnston ◽  
E Reich ◽  
M Heinrich

Author(s):  
Wei-Feng Xu ◽  
Na-Na Wu ◽  
Yan-Wei Wu ◽  
Yue-Xuan Qi ◽  
Mei-Yan Wei ◽  
...  

AbstractMarine natural products play critical roles in the chemical defense of many marine organisms and are essential, reputable sources of successful drug leads. Sixty-seven 14-membered resorcylic acid lactone derivatives 3–27 and 30–71 of the natural product zeaenol (1) isolated from the marine-derived fungus Cochliobolus lunatus were semisynthesized by chlorination, acylation, esterification, and acetalization in one to three steps. The structures of these new derivatives were established by HRESIMS and NMR techniques. All the compounds (1–71) were evaluated for their antialgal and antiplasmodial activities. Among them, 14 compounds displayed antifouling activities against adhesion of the fouling diatoms. In particular, 9 and 34 exhibited strong and selective inhibitory effects against the diatoms Navicula laevissima and Navicula exigua (EC50 = 6.67 and 8.55 μmol/L), respectively, which were similar in efficacy to those of the positive control SeaNine 211 (EC50 = 2.90 and 9.74 μmol/L). More importantly, 38, 39, and 69–71 showed potent antiplasmodial activities against Plasmodium falciparum with IC50 values ranging from 3.54 to 9.72 μmol/L. Very interestingly, the five antiplasmodial derivatives displayed non-toxicity in the cytotoxicity assays and the zebrafish embryos model, thus, representing potential promising antiplasmodial drug agents. The preliminary structure–activity relationships indicated that biphenyl substituent at C-2, acetonide at positions C-5′ and C-6′, and tri- or tetra-substituted of acyl groups increased the antiplasmodial activity. Therefore, combining evaluation of chemical ecology with pharmacological models will be implemented as a systematic strategy, not only for environmentally friendly antifoulants but also for structurally novel drugs.


2020 ◽  
Vol 394 ◽  
pp. 114961 ◽  
Author(s):  
Bradley J. Ridder ◽  
Derek J. Leishman ◽  
Matthew Bridgland-Taylor ◽  
Mohammadreza Samieegohar ◽  
Xiaomei Han ◽  
...  

F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2701
Author(s):  
Gajinder Pal Singh

Background: New anti-malarial drugs are needed to meet the challenge of artemisinin resistance and to achieve malaria elimination and eradication. The new anti-malarial compounds are expected to have many desirable properties, such as activity against multiple stages of Plasmodium, low host cytotoxicity, and low propensity for resistance development, but whether and how these properties might be linked to each other is not clear. A better understanding of the relationship between activities of compounds against different stages of Plasmodium could help in the development of strategies to prioritize compounds with maximum potential for further development. Methods: We utilized the large amount of data that has recently been generated on 400 anti-malarial Malaria Box compounds and performed statistical analyses, such as rank correlation, hierarchical clustering, and principal-component analyses, to test associations between activities against different stages of Plasmodium, other pathogens, and human cells. Results: We found significant positive correlations between the activities of compounds against different stages of Plasmodium. Our results also show toxicity associated with assays conducted at higher compound concentrations. Principal-component analyses (PCA) of the data allowed differentiation of Plasmodium-specific activity from general toxicity and predicted success in in vitro evolution of resistance. We found that a single principal-component can capture most of the desirable properties of Malaria Box compounds and can be used to rank compounds from most desirable to least desirable activity-profile. Conclusions: Here, we provide a systematic strategy to prioritize Malaria Box compounds for further development. This approach may be applied for prioritization of anti-malarial compounds in general.


Author(s):  
Ambe Desmond ◽  
Lobe Elias ◽  
Divine B. Nde

Potatoes (S. tuberosum L) is one of the most important tuber crops in the world. However, its high moisture content and inadequate storage and processing techniques have a negative influence on its quality and availability throughout the year. This work was carried out to optimize the blanching behavior and drying kinetics of potato slices. Fresh potato slices (5, 10 and 15 mm) were blanched at 70, 80 and 90°C for 1, 3 and 5 min following a 3k level full factorial design. The loss in Vitamin C was used as a quality marker for the optimization process. The influence of blanching on the drying behavior of potato slices was carried out at 50, 60 and 70°C. Results showed that blanching parameters had a significant (P < 0.05) effect on vitamin C loss. Optimum blanching conditions were blanching temperature of 80oC, blanching time of 3 min and a slice thickness of 10 mm which gave an average loss in Vitamin C of about 2.6%. Drying data were successfully fitted to three different thin layer drying models. The use of blanching as a pretreatment before the drying of potato is recommended because it reduces the drying time by 30%.


Sign in / Sign up

Export Citation Format

Share Document