scholarly journals The antioxidant protein ZmPrx5 contributes resistance to maize stalk rot

2021 ◽  
Author(s):  
Shunxi Wang ◽  
Wencheng Liu ◽  
Zan Chen ◽  
Jinghua Zhang ◽  
Xingmeng Jia ◽  
...  
Crop Science ◽  
1966 ◽  
Vol 6 (3) ◽  
pp. 288-290 ◽  
Author(s):  
A. J. Kappelman ◽  
D. L. Thompson

Crop Science ◽  
1987 ◽  
Vol 27 (6) ◽  
pp. 1321-1322 ◽  
Author(s):  
R. R. Duncan ◽  
A. Sotomayor‐Rios ◽  
P. R. Hepperly ◽  
D. T. Rosenow ◽  
F. R. Miller ◽  
...  

Mycologia ◽  
2000 ◽  
Vol 92 (3) ◽  
pp. 522-527 ◽  
Author(s):  
H. J. Jee ◽  
H. H. Ho ◽  
W. D. Cho
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1073
Author(s):  
Mitchell T. Ringuet ◽  
Billie Hunne ◽  
Markus Lenz ◽  
David M. Bravo ◽  
John B. Furness

Dietary organic selenium (Se) is commonly utilized to increase formation of selenoproteins, including the major antioxidant protein, glutathione peroxidase (GPx). Inorganic Se salts, such as sodium selenite, are also incorporated into selenoproteins, and there is evidence that nanoelemental Se added to the diet may also be effective. We conducted two trials, the first investigated inorganic Se (selenite), organic Se (L-selenomethionine) and nanoelemental Se, in conventional mice. Their bioavailability and effectiveness to increase GPx activity were examined. The second trial focused on determining the mechanism by which dietary Se is incorporated into tissue, utilising both conventional and germ-free (GF) mice. Mice were fed a diet with minimal Se, 0.018 parts per million (ppm), and diets with Se supplementation, to achieve 0.07, 0.15, 0.3 and 1.7 ppm Se, for 5 weeks (first trial). Mass spectrometry, Western blotting and enzymatic assays were used to investigate bioavailability, protein levels and GPx activity in fresh frozen tissue (liver, ileum, plasma, muscle and feces) from the Se fed animals. Inorganic, organic and nanoelemental Se were all effectively incorporated into tissues. The high Se diet (1.7 ppm) resulted in the highest Se levels in all tissues and plasma, independent of the Se source. Interestingly, despite being ~11 to ~25 times less concentrated than the high Se, the lower Se diets (0.07; 0.15) resulted in comparably high Se levels in liver, ileum and plasma for all Se sources. GPx protein levels and enzyme activity were significantly increased by each diet, relative to control. We hypothesised that bacteria may be a vector for the conversion of nanoelemental Se, perhaps in exchange for S in sulphate metabolising bacteria. We therefore investigated Se incorporation from low sulphate diets and in GF mice. All forms of selenium were bioavailable and similarly significantly increased the antioxidant capability of GPx in the intestine and liver of GF mice and mice with sulphate free diets. Se from nanoelemental Se resulted in similar tissue levels to inorganic and organic sources in germ free mice. Thus, endogenous mechanisms, not dependent on bacteria, reduce nanoelemental Se to the metabolite selenide that is then converted to selenophosphate, synthesised to selenocysteine, and incorporated into selenoproteins. In particular, the similar efficacy of nanoelemental Se in comparison to organic Se in both trials is important in the view of the currently limited cheap sources of Se.


2021 ◽  
Vol 22 (2) ◽  
pp. 870
Author(s):  
Liang Ma ◽  
Yali Sun ◽  
Xinsen Ruan ◽  
Pei-Cheng Huang ◽  
Shi Wang ◽  
...  

Gibberella stalk rot (GSR) by Fusarium graminearum causes significant losses of maize production worldwide. Jasmonates (JAs) have been broadly known in regulating defense against pathogens through the homeostasis of active JAs and COI-JAZ-MYC function module. However, the functions of different molecular species of JAs and COI-JAZ-MYC module in maize interactions with Fusarium graminearum and regulation of diverse metabolites remain unknown. In this study, we found that exogenous application of MeJA strongly enhanced resistance to GSR. RNA-seq analysis showed that MeJA activated multiple genes in JA pathways, which prompted us to perform a genome-wide screening of key JA signaling components in maize. Yeast Two-Hybrid, Split-Luciferase, and Pull-down assays revealed that the JA functional and structural mimic coronatine (COR) functions as an essential ligand to trigger the interaction between ZmCOIa and ZmJAZ15. By deploying CRISPR-cas9 knockout and Mutator insertional mutants, we demonstrated that coi1a mutant is more resistant, whereas jaz15 mutant is more susceptible to GSR. Moreover, JA-deficient opr7-5opr8-2 mutant displayed enhanced resistance to GSR compared to wild type. Together, these results provide strong evidence that ZmJAZ15 plays a pivotal role, whereas ZmCOIa and endogenous JA itself might function as susceptibility factors, in maize immunity to GSR.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2650-2650
Author(s):  
S. Ma ◽  
Z. Cao ◽  
Q. Qu ◽  
N. Liu ◽  
M. Xu ◽  
...  

Author(s):  
G. M. Waterhouse

Abstract A description is provided for Pythium aphanidermatum. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: On a wide range of hosts, often similar to those attacked by P. butleri, but inducing different symptoms, represented in the following families: Amaranthaceae, Amaryllidaceae, Araceae, Basellaceae, Bromeliaceae, Cactaceae, Chenopodiaceae, Compositae, Coniferae, Convolvulaceae, Cruciferae, Cucurbitaceae, Euphorbiaceae, Gramineae, Leguminosae, Linaceae, Malvaceae, Moraceae, Passifloraceae, Rosaceae, Solanaceae, Umbelliferae, Violaceae, Vitaceae, Zingiberaceae. DISEASES: Damping-off of various seedlings; 'cottony-leak' of cucurbit fruit in storage; 'cottony blight' of turf grasses; root and stalk rot of maize. Other hosts: tobacco, sugar-beet, sugar-cane, papaw, pineapple, ginger, bean and cotton. GEOGRAPHICAL DISTRIBUTION: Africa (Central African Republic, Fernando, Ghana, Kenya, Malawi, Mali, Nigeria, Sierra Leone, South Africa, Southern Rhodesia, Sudan, Togo, Zambia); Asia (Ceylon, China, Formosa, India, Indonesia, Israel, Japan, Java, Malaya, Philippines, Sumatra); Australasia & Oceania (Australia, Hawaii, New Caledonia); North America (Canada, Mexico); Central America & West Indies (Antilles, Jamaica, Puerto Rico); South America (Argentina, Brazil, Peru, Venezuela); Europe Austria, Cyprus, Czechoslovakia, Great Britain, Greece, Holland, Italy, Poland, U.S.S.R., Yugoslavia). (CMI Map 309) TRANSMISSION: Soil-borne. Eggplant fruit become infected when blossom end is in contact with soil (5: 465). Readily isolated from soil using fresh potato cubes treated with streptomycin and pimaricin as baits (43, 1519; 43, 46) or seedling papaw roots in soil containing papaw tissue (43, 1720). Also recorded as seed-borne on tomato and cucurbits but doubtful whether seed-transmitted (see Noble et al., An Annotated List of Seed-Borne Diseases, 1958, pp. 23, 25, 124).


Sign in / Sign up

Export Citation Format

Share Document