scholarly journals Design and analysis of spiral bevel gears with seventh-order function of transmission error

2013 ◽  
Vol 26 (5) ◽  
pp. 1310-1316 ◽  
Author(s):  
Jinzhan Su ◽  
Zongde Fang ◽  
Xiangwei Cai
Author(s):  
Yanming Mu ◽  
Zongde Fang

This paper presents a new method to design a seventh-order transmission error for high contact ratio spiral bevel gears by the modified curvature motion method to reach the purpose of reducing or eliminating gear vibration and noise. In this paper, firstly, based on the predesigned seventh-order transmission error, the polynomial coefficients of transmission error curve can be obtained. Secondly, a method named modified curvature motion method is used to generate the spiral bevel gear with the predesigned transmission error. Lastly, based on TCA and LTCA, we verify the feasibility of the modified curvature motion method to generate spiral bevel gear with seventh-order transmission error, and the meshing impact of gear set with the seventh-order and second-order function of transmission error is analyzed and compared. The results of a numerical example show that the seventh-order transmission error acquired by the modified curvature motion method can effectively reduce the meshing impact of spiral bevel gears. The tooth modification method and meshing impact analysis method can serve as a basis for developing a general technique of flank modification for spiral bevel gears.


2011 ◽  
Vol 199-200 ◽  
pp. 386-391 ◽  
Author(s):  
Ben Wang ◽  
Lin Hua

Influence of alignment errors on the meshing of involute spiral bevel gears using FEM is investigated in this paper. 3D geometrical models of involute spiral bevel gear drive are computationally designed and the reliable non-linear finite element contact models are also developed. Furthermore, based on the valid 3D FE models, simulations of meshing of loaded spiral bevel gears with four types of alignment errors are performed. The influence of four types of alignment errors on contact stress, transmission error and shift of path of contact has been discussed in detail. The results demonstrate that the alignment errors have different degrees of adverse effects on the load-carrying capacity and the smoothness of transmission. Therefore, the study provides useful reference for the modification design and the assembling of spiral bevel gears in practice.


2020 ◽  
Vol 10 (15) ◽  
pp. 5109 ◽  
Author(s):  
Yimeng Fu ◽  
Yaobing Zhuo ◽  
Xiaojun Zhou ◽  
Bowen Wan ◽  
Haoliang Lv ◽  
...  

The precise mathematical model for the tooth surface and transition surface of spiral bevel gears is derived. Taking a pair of spiral bevel gears of a heavy vehicle as an example of calculation and analysis, a finite element model of spiral bevel gears transmission system is established. Through the finite element tooth contact analysis under quasi-static loading and high loading condition, the influences of torque on the root stress distribution, contact stress, and transmission error are discussed, and the results are compared with the empirical formula results. Finally, a contact performance test bench of spiral bevel gear pair is developed, then the root bending stress, contact pattern, and transmission error tests are carried out. These experiment results are compared with analyzed ones, which showed a good agreement.


2010 ◽  
Vol 29-32 ◽  
pp. 2319-2326
Author(s):  
Guang Lei Liu ◽  
Hong Wei Fan ◽  
Ping Jiang

An optimization approach for manufacture parameter design of the SGM spiral bevel gears with modified tooth geometry is proposed. The approach is accomplished by application of local synthesis, tooth contact analysis (TCA) and dual-objective optimization of transmission error function. A computer program to obtain a set of manufacture parameters based on the proposed theory is developed and illustrated with an example. The proposed method provides a set of machine-tool settings for pinion NC-grinding which ensures: (i) a localized bearing contact pattern less sensitive to misalignments, (ii) a parabolic transmission error function to reduce vibration and noise in mesh.


1988 ◽  
Vol 110 (2) ◽  
pp. 211-220 ◽  
Author(s):  
W. D. Mark

For a given set of forces transmitted by the gears, each of the three components of the generalized transmission error of spiral bevel gears is shown to be stationary with respect to small independent variations in the positions of the endpoints of the lines of tooth contact about their true values. The tangential generalized transmission error component is shown to take on a minimum value at the true endpoint positions. A computational procedure based on the method of steepest descent is described for computing the true line of contact endpoint positions and the three components of the generalized transmission error. A method for computing the Fourier series coefficients of the tooth meshing harmonics of the three generalized transmission error components also is provided.


Author(s):  
Joël Teixeira Alves ◽  
J. P. de Vaujany ◽  
M. Guingand

The design of spiral bevel gears is still very complex because tooth geometry and thus kinematics performance depend on the manufacturing process of this type of gear. The cutting process is dominated by two major manufacturers: Gleason and Klingelnberg. The shape of the teeth surfaces are governed by a large number of programmed machine settings, so they cannot be optimized intuitively. Due to the progress made during the last decade by CNC machines and CAM (Computer Aided Manufacturing) softwares, it is now possible to manufacture spiral bevel gears with quite good quality on a 5-axis milling machine. In a previous study, the authors presented a numerical model for calculating the quasi-static load sharing of spiral bevel gears. Two kinds of geometries were developed: a simplified Gleason type, and a geometry based on classical spherical involutes combined with a logarithmic spiral. After being generated using a CAD (Computer-Aided Design) software, these two geometries were manufactured with a 5-axis milling machine controlled by CAM software. A metrological study showed that manufacturing by a 5-axis milling machine can be an alternative to conventional cutting methods. The aim of the present paper is to validate the numerical model. To reach this goal, a test bench was designed to measure the loaded transmission error and visualize the contact patterns. The test bench is integrated inside a numerical 3-axis milling machine: the pinion is mounted on the spindle, while the base of the bench is clamped on its plate. Thus assembly errors can be imposed easily and accurately. Measured and simulated transmission errors are then compared for different axis misalignments cases.


Author(s):  
Vilmos V. Simon

In this study, a method is proposed for the advanced manufacture of face-hobbed spiral bevel gears on CNC hypoid generators with optimized tooth surface geometry. An optimization methodology is applied to systematically define optimal head-cutter geometry and machine tool settings to introduce optimal tooth modifications. The goal of the optimization is to simultaneously minimize tooth contact pressures and angular displacement error of the driven gear (the transmission error). The optimization is based on machine tool setting variation on the cradle-type generator conducted by optimal polynomial functions. An algorithm is developed for the execution of motions on the CNC hypoid generator using the relations on the cradle-type machine. Effectiveness of the method was demonstrated by using a face-hobbed spiral bevel gear example. Significant reductions in the maximum tooth contact pressure and in the transmission errors were obtained.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Xiaoyu Sun ◽  
Yongqiang Zhao ◽  
Ming Liu ◽  
Yanping Liu

The mesh model and mesh stiffness representation are the two main factors affecting the calculation method and the results of the dynamic mesh force. Comparative studies considering the two factors are performed to explore appropriate approaches to estimate the dynamic meshing load on each contacting tooth flank of spiral bevel gears. First, a tooth pair mesh model is proposed to better describe the mesh characteristics of individual tooth pairs in contact. The mesh parameters including the mesh vector, transmission error, and mesh stiffness are compared with those of the extensively applied single-point mesh model of a gear pair. Dynamic results from the proposed model indicate that it can reveal a more realistic and pronounced dynamic behavior of each engaged tooth pair. Second, dynamic mesh force calculations from three different approaches are compared to further investigate the effect of mesh stiffness representations. One method uses the mesh stiffness estimated by the commonly used average slope approach, the second method applies the mesh stiffness evaluated by the local slope approach, and the third approach utilizes a quasistatically defined interpolation function indexed by mesh deflection and mesh position.


Sign in / Sign up

Export Citation Format

Share Document