Manufacture Parameter Design of SMG Spiral Bevel Gears Based on Local Synthesis and Transmission Error Optimization

2010 ◽  
Vol 29-32 ◽  
pp. 2319-2326
Author(s):  
Guang Lei Liu ◽  
Hong Wei Fan ◽  
Ping Jiang

An optimization approach for manufacture parameter design of the SGM spiral bevel gears with modified tooth geometry is proposed. The approach is accomplished by application of local synthesis, tooth contact analysis (TCA) and dual-objective optimization of transmission error function. A computer program to obtain a set of manufacture parameters based on the proposed theory is developed and illustrated with an example. The proposed method provides a set of machine-tool settings for pinion NC-grinding which ensures: (i) a localized bearing contact pattern less sensitive to misalignments, (ii) a parabolic transmission error function to reduce vibration and noise in mesh.

2020 ◽  
Vol 10 (15) ◽  
pp. 5109 ◽  
Author(s):  
Yimeng Fu ◽  
Yaobing Zhuo ◽  
Xiaojun Zhou ◽  
Bowen Wan ◽  
Haoliang Lv ◽  
...  

The precise mathematical model for the tooth surface and transition surface of spiral bevel gears is derived. Taking a pair of spiral bevel gears of a heavy vehicle as an example of calculation and analysis, a finite element model of spiral bevel gears transmission system is established. Through the finite element tooth contact analysis under quasi-static loading and high loading condition, the influences of torque on the root stress distribution, contact stress, and transmission error are discussed, and the results are compared with the empirical formula results. Finally, a contact performance test bench of spiral bevel gear pair is developed, then the root bending stress, contact pattern, and transmission error tests are carried out. These experiment results are compared with analyzed ones, which showed a good agreement.


1996 ◽  
Vol 118 (4) ◽  
pp. 573-579 ◽  
Author(s):  
F. L. Litvin ◽  
A. G. Wang ◽  
R. F. Handschuh

Face-milled spiral bevel gears with uniform tooth height are considered. An approach is proposed for the design of low-noise and localized bearing contact of such gears. The approach is based on the mismatch of contacting surfaces and permits two types of bearing contact either directed longitudinally or across the surface to be obtained. Conditions to avoid undercutting were determined. A Tooth Contact Analysis (TCA) was developed. This analysis was used to determine the influence of misalignment on meshing and contact of the spiral bevel gears. A numerical example that illustrates the developed theory is provided.


2010 ◽  
Vol 37-38 ◽  
pp. 927-933 ◽  
Author(s):  
Guang Lei Liu ◽  
Yue Jun Tian ◽  
Ping Jiang

The authors propose an optimization method based on local synthesis to fulfill the expected contact path (ECP) at mean contact point (M) of spiral bevel gears. The method is a combination of local synthesis, tooth contact analysis (TCA) and application of optimization. Machine-tool settings based on local synthesis are found and contact path (CP) on tooth surface is formed. TCA extracts the information from CP and transforms it to a projected CP (PCP) by rotation in a plane across gear axis. An objective function is established by contrasting ECP to PCP. A program in Matlab language is developed for the simulation of objective function optimization. A spiral bevel gear drive in aviation accessory gear box is used to prove the feasibility of the proposed method. It shows that the method is effective and does not affect transmission errors very much for the realization of ECP.


2011 ◽  
Vol 86 ◽  
pp. 278-282
Author(s):  
Guang Lei Liu ◽  
Rui Ting Zhang ◽  
Ning Zhao

A method—characteristic parameters analysis (CPA) is put forward, which is used for quantitative analysis of contact pattern of spiral bevel gears with installation errors. For forming the tooth surface of spiral bevel gears, local synthesis is used. To imitate rolling test machine, the pinion drive torque is calculated under the indentation depth 0.00635mm. Driven by this torque, the size, shape, location and variation of contact pattern are obtained by loaded tooth contact analysis (LTCA). A pair of aviation spiral bevel gears was taken to quantitatively analyze the various contact patterns under different installation errors. The results indicate that the contact pattern is more sensitive to pinion axis installation error.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
Vilmos V. Simon

In this study, an optimization methodology is proposed to systematically define the optimal head-cutter geometry and machine-tool settings to simultaneously minimize the tooth contact pressure and angular displacement error of the driven gear (the transmission error), and to reduce the sensitivity of face-hobbed spiral bevel gears to the misalignments. The proposed optimization procedure relies heavily on the loaded tooth contact analysis for the prediction of tooth contact pressure distribution and transmission errors influenced by the misalignments inherent in the gear pair. The load distribution and transmission error calculation method employed in this study were developed by the author of this paper. The targeted optimization problem is a nonlinear constrained optimization problem, belonging to the framework of nonlinear programming. In addition, the objective function and the constraints are not available analytically, but they are computable, i.e., they exist numerically through the loaded tooth contact analysis. For these reasons, a nonderivative method is selected to solve this particular optimization problem. That is the reason that the core algorithm of the proposed nonlinear programming procedure is based on a direct search method. The Hooke and Jeeves pattern search method is applied. The effectiveness of this optimization was demonstrated on a face-hobbed spiral bevel gear example. Drastic reductions in the maximum tooth contact pressure (62%) and in the transmission errors (70%) were obtained.


1996 ◽  
Vol 118 (4) ◽  
pp. 580-585 ◽  
Author(s):  
R. F. Handschuh ◽  
T. P. Kicher

A modelling method for analyzing the three-dimensional thermal behavior of spiral bevel gears has been developed. The model surfaces are generated through application of differential geometry to the manufacturing process for face-milled spiral bevel gears. Contact on the gear surface is found by combining tooth contact analysis with three-dimensional Hertzian theory. The tooth contact analysis provides the principle curvatures and orientations of the two surfaces. This information is then used directly in the Hertzian analysis to find the contact size and maximum pressure. Heat generation during meshing is determined as a function of the applied load, sliding velocity, and coefficient of friction. Each of these factors change as the point of contact changes during meshing. A nonlinear finite element program was used to conduct the heat transfer analysis. This program permitted the time- and position-varying boundary conditions, found in operation, to be applied to a one-tooth model. An example model and analytical results are presented.


Author(s):  
Isamu Tsuji ◽  
Kazumasa Kawasaki

In this article, the assembly interference of spiral bevel gears in a Klingelnberg cyclo-palloid system is analyzed based upon tooth contact analysis and is investigated experimentally. Each backlash in increasing mounting distance of the pinion is calculated step by step, using developed tooth contact analysis. When the backlash increases, the assembly interference does not occur based upon the calculated results. When the backlash decreases and is less than zero, the assembly interference occurs. When the assembly interference occurs, the tooth surfaces should be modified in order to prevent the assembly interference. In this case, a method of the modification is proposed. The experimental results showed a good agreement with the analyzed ones. As a result, the validity of the analysis and avoidance of the assembly interference in this method was confirmed.


Author(s):  
Yanming Mu ◽  
Zongde Fang

This paper presents a new method to design a seventh-order transmission error for high contact ratio spiral bevel gears by the modified curvature motion method to reach the purpose of reducing or eliminating gear vibration and noise. In this paper, firstly, based on the predesigned seventh-order transmission error, the polynomial coefficients of transmission error curve can be obtained. Secondly, a method named modified curvature motion method is used to generate the spiral bevel gear with the predesigned transmission error. Lastly, based on TCA and LTCA, we verify the feasibility of the modified curvature motion method to generate spiral bevel gear with seventh-order transmission error, and the meshing impact of gear set with the seventh-order and second-order function of transmission error is analyzed and compared. The results of a numerical example show that the seventh-order transmission error acquired by the modified curvature motion method can effectively reduce the meshing impact of spiral bevel gears. The tooth modification method and meshing impact analysis method can serve as a basis for developing a general technique of flank modification for spiral bevel gears.


2011 ◽  
Vol 199-200 ◽  
pp. 386-391 ◽  
Author(s):  
Ben Wang ◽  
Lin Hua

Influence of alignment errors on the meshing of involute spiral bevel gears using FEM is investigated in this paper. 3D geometrical models of involute spiral bevel gear drive are computationally designed and the reliable non-linear finite element contact models are also developed. Furthermore, based on the valid 3D FE models, simulations of meshing of loaded spiral bevel gears with four types of alignment errors are performed. The influence of four types of alignment errors on contact stress, transmission error and shift of path of contact has been discussed in detail. The results demonstrate that the alignment errors have different degrees of adverse effects on the load-carrying capacity and the smoothness of transmission. Therefore, the study provides useful reference for the modification design and the assembling of spiral bevel gears in practice.


Sign in / Sign up

Export Citation Format

Share Document