scholarly journals Energy-efficiency maximization for fixed-wing UAV-enabled relay network with circular trajectory

Author(s):  
Chenxiao Xie ◽  
Xin-Lin Huang
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4793 ◽  
Author(s):  
Bushra Bashir Chaoudhry ◽  
Syed Ali Hassan ◽  
Joachim Speidel ◽  
Haejoon Jung

This paper presents cooperative transmission (CT), where multiple relays are used to achieve array and diversity gains, as an enabling technology for Internet of Things (IoT) networks with hardware-limited devices. We investigate a channel coding aided decode-and-forward (DF) relaying network, considering a two-hop multiple-relay network, where the data transmission between the source and the destination is realized with the help of DF relays. Low density parity check (LDPC) codes are adopted as forward error correction (FEC) codes to encode and decode the data both at the source and relays. We consider both fixed and variable code rates depending upon the quality-of-service (QoS) provisioning such as spectral efficiency and maximum energy efficiency. Furthermore, an optimal power allocation scheme is studied for the cooperative system under the energy efficiency constraint. We present the simulation results of our proposed scheme, compared with conventional methods, which show that if decoupled code rates are used on both hops then a trade-off has to be maintained between system complexity, transmission delay, and bit error rate (BER).


2015 ◽  
Vol 17 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Na Deng ◽  
Ming Zhao ◽  
Jinkang Zhu ◽  
Wuyang Zhou

2017 ◽  
Vol 65 (9) ◽  
pp. 3794-3809 ◽  
Author(s):  
Wei Xu ◽  
Jian Liu ◽  
Shi Jin ◽  
Xiaodai Dong

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5720
Author(s):  
Ninghao Zhou ◽  
Jinfeng Hu ◽  
Jia Hou

In order to improve the energy efficiency (EE) performance of cooperative networks, this study combines non-orthogonal multiple access (NOMA) with simultaneous wireless information and power transfer (SWIPT) technologies to construct a cooperative relay network composed of one base station (BS), multiple near users, and one far user. Based on the network characteristics, a time-division resource allocation rule is proposed, and EE formulas regarding direct-link mode and cooperative mode are derived. Considering user selection and decoding performance, to obtain the optimal EE, this study utilizes a DinkelBach iterative algorithm based on the golden section (GS-DinkelBach) to solve the EE optimization problem, which is affected by power transmitted from the BS, achievable rates under three communication links, and quality of service (QoS) constraints of users. The simulation results show that the GS-DinkelBach algorithm can obtain precise EE gains with low computational complexity. Compared with the traditional NOMA–SWIPT direct-link network model and the relay network model, the optimal EE of the established network model could be increased by 0.54 dB and 1.66 dB, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4303
Author(s):  
Zhen Li ◽  
Mingchuan Yang ◽  
Gang Wang

In this paper, we investigated the performance of a two-way satellite-terrestrial DF relay network with asymmetric simultaneous wireless information and power transfer (SWIPT). In particular, selective physical-layer network coding (SPNC) was employed in the proposed network, improving the throughput performance. We derived the expressions of system average end-to-end throughput and single node detection (SND) occurrence probability. Furthermore, to observe the effects of the power splitting (PS) coefficient on the energy efficiency performance, the expressions of energy harvested in the physical-layer network coding (PNC) and SPNC protocol were also derived. Finally, theoretical analyses and Monte Carlo simulation results are presented to show: (i) SPNC protocol outperforms the conventional PNC protocol in the two-way satellite-terrestrial relay network with SWIPT in infrequent light shadowing (ILS), average shadowing (AS), and frequent heavy shadowing (FHS) Shadowed-Rician fading channels; (ii) as the channel state gets worse, SPNC protocol can achieve more performance improvement than PNC protocol; (iii) as the PS coefficient increases, the average end-to-end throughput performance increases progressively, and the average energy efficiency performance increases progressively within a certain range, while decreasing in the others.


Sign in / Sign up

Export Citation Format

Share Document