Traffic-aware relay sleep control for joint macro-relay network energy efficiency

2015 ◽  
Vol 17 (1) ◽  
pp. 47-57 ◽  
Author(s):  
Na Deng ◽  
Ming Zhao ◽  
Jinkang Zhu ◽  
Wuyang Zhou
Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4793 ◽  
Author(s):  
Bushra Bashir Chaoudhry ◽  
Syed Ali Hassan ◽  
Joachim Speidel ◽  
Haejoon Jung

This paper presents cooperative transmission (CT), where multiple relays are used to achieve array and diversity gains, as an enabling technology for Internet of Things (IoT) networks with hardware-limited devices. We investigate a channel coding aided decode-and-forward (DF) relaying network, considering a two-hop multiple-relay network, where the data transmission between the source and the destination is realized with the help of DF relays. Low density parity check (LDPC) codes are adopted as forward error correction (FEC) codes to encode and decode the data both at the source and relays. We consider both fixed and variable code rates depending upon the quality-of-service (QoS) provisioning such as spectral efficiency and maximum energy efficiency. Furthermore, an optimal power allocation scheme is studied for the cooperative system under the energy efficiency constraint. We present the simulation results of our proposed scheme, compared with conventional methods, which show that if decoupled code rates are used on both hops then a trade-off has to be maintained between system complexity, transmission delay, and bit error rate (BER).


2013 ◽  
Vol 5 (7) ◽  
pp. 677 ◽  
Author(s):  
Jingjing Zhang ◽  
Mina Taheri Hosseinabadi ◽  
Nirwan Ansari

Author(s):  
Prapassorn Phaiwitthayaphorn ◽  
Kazuo Mori ◽  
Hideo Kobayashi ◽  
Pisit Boonsrimuang

The mobile traffic continuously grows at a rapid rate driven by the widespread use of wireless devices. Along with that, the demands for higher data rate and better coverage lead to increase in power consumption and operating cost of network infrastructure. The concept of heterogeneous networks (HetNets) has been proposed as a promising approach to provide higher coverage and capacity for cellular networks. HetNet is an advanced network consisting of multiple kinds of base stations, i.e., macro base station (MBS), and small base station (SBS). The overlay of many SBSs into the MBS coverage can provide higher network capacity and better coverage in cellular networks. However, the dense deployment of SBSs would cause an increase in the power consumption, leading to a decrease in the energy efficiency in downlink cellular networks. Another technique to improve energy efficiency while reducing power consumption in the network is to introduce sleep control for SBSs. This paper proposes cell throughput based sleep control which the cell capacity ratio for the SBSs is employed as decision criteria to put the SBSs into a sleep state. The simulation results for downlink communications demonstrate that the proposed scheme improves the energy efficiency, compared with the conventional scheme.


2017 ◽  
Vol 65 (9) ◽  
pp. 3794-3809 ◽  
Author(s):  
Wei Xu ◽  
Jian Liu ◽  
Shi Jin ◽  
Xiaodai Dong

Sign in / Sign up

Export Citation Format

Share Document