RANOLAZINE, AN ANTI-ANGINAL AGENT, IMPROVES SPATIO-TEMPORAL ORGANIZATION OF VENTRICULAR FIBRILLATION IN A RABBIT MODEL

2014 ◽  
Vol 30 (10) ◽  
pp. S150-S151
Author(s):  
N. Zamiri ◽  
M. Azam ◽  
S. Massé ◽  
M. Kusha ◽  
P.F. Lai ◽  
...  
2018 ◽  
Vol 46 (6) ◽  
pp. 864-876 ◽  
Author(s):  
Jinny Robson ◽  
Parham Aram ◽  
Martyn P. Nash ◽  
Chris P. Bradley ◽  
Martin Hayward ◽  
...  

2020 ◽  
Vol 1861 (1) ◽  
pp. 148091 ◽  
Author(s):  
Kirill Salewskij ◽  
Bettina Rieger ◽  
Frances Hager ◽  
Tasnim Arroum ◽  
Patrick Duwe ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Hui-Ling Lee ◽  
Po-Cheng Chang ◽  
Hung-Ta Wo ◽  
Hao-Tien Liu ◽  
Ming-Shien Wen ◽  
...  

Aims: Whether therapeutic hypothermia (TH) is proarrhythmic in preexisting failing hearts with acute ischemia–reperfusion (IR) injury is unknown. Additionally, the effectiveness of rotigaptide on improving conduction slowing in hearts with IR injury is ambiguous. We investigated the electrophysiological effects of TH and rotigaptide in failing rabbit hearts with acute IR injury and determined the underlying molecular mechanisms.Methods and Results: Heart failure was induced by right ventricular pacing (320 beats/min, 4 weeks). Rabbits with pacing-induced heart failure were randomly divided into TH (n = 14) and non-TH (n = 7) groups. The IR rabbit model was created by ligating the coronary artery for 60 min, followed by reperfusion for 15 min in vivo. Then, the hearts were excised quickly and Langendorff-perfused for simultaneous voltage and intracellular Ca2+ (Cai) optical mapping. Electrophysiological studies were conducted, and vulnerability to ventricular fibrillation (VF) was evaluated using pacing protocols. TH (33°C) was instituted after baseline studies, and electrophysiological studies were repeated. Rotigaptide (300 nM) was infused for 20 min, and electrophysiological studies were repeated under TH. Cardiac tissues were sampled for Western blotting. TH increased the dispersion and beat-to-beat variability of action potential duration (APD), aggravated conduction slowing, and prolonged Cai decay to facilitate spatially discordant alternans (SDA) and VF induction. Rotigaptide reduced the dispersion and beat-to-beat variability of APD and improved slowed conduction to defer the onset of arrhythmogenic SDA by dynamic pacing and elevate the pacing threshold of VF during TH. However, the effect of rotigaptide on TH-enhanced VF inducibility was statistically insignificant. TH attenuated IR-induced dysregulation of protein expression, but its functional role remained uncertain.Conclusion: Therapeutic hypothermia is proarrhythmic in failing hearts with acute IR injury. Rotigaptide improves TH-induced APD dispersion and beat-to-beat variability and conduction disturbance to defer the onset of arrhythmogenic SDA and elevate the VF threshold by dynamic pacing, but these beneficial electrophysiological effects are unable to suppress TH-enhanced VF inducibility significantly.


2005 ◽  
Vol 12 (1) ◽  
pp. 31-40 ◽  
Author(s):  
B. S. Daya Sagar

Abstract. Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.


IUBMB Life ◽  
2001 ◽  
Vol 52 (3-5) ◽  
pp. 237-245 ◽  
Author(s):  
György Hajnóczky ◽  
Pál Pacher ◽  
Xuena Lin

Sign in / Sign up

Export Citation Format

Share Document