Analysis of the flow pattern and periodicity of gas–liquid–liquid three-phase flow in a countercurrent mixer-settler

Author(s):  
Minghang Zhang ◽  
Wangfeng Cai ◽  
Pei Zhu ◽  
Le Xie ◽  
Yan Wang
2020 ◽  
Vol 76 ◽  
pp. 101834
Author(s):  
Muhammad Waqas Yaqub ◽  
Ramasamy Marappagounder ◽  
Risza Rusli ◽  
D.M. Reddy Prasad ◽  
Rajashekhar Pendyala

2020 ◽  
Author(s):  
Nurmala Dyah Fajarningrum ◽  
Deendarlianto ◽  
Indarto ◽  
IGNB Catrawedarma

2011 ◽  
Vol 402 ◽  
pp. 816-819
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang ◽  
Jin Hai Gong ◽  
Zhen Yu Wang

The experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) and the cross-correlation technology was used for the study of the characteristics of the interfacial wave velocity about two types of annular flow regimes (AN║DO/W and AN║DW/O) for gas-oil-water three-phase flow. The results show that the interfacial wave velocity on the liquid film of AN║DO/W flow pattern and AN║DW/O flow pattern all increases with the increase of gas superficial velocity and liquid superficial velocity on the condition of fixed ratio of oil and water flow rates, but the difference is that the increase is a linear monotonic increase for AN║DO/W flow pattern and a non-linear increase for AN║DW/O flow pattern, and the liquid superficial velocity makes a larger contribution than the gas superficial velocity. The interfacial wave velocity also increases with the increase of input water cut in liquid at different gas superficial velocities under the conditions of liquid superficial velocity fixed.


Author(s):  
Florian Schmidt ◽  
Dieter Mewes ◽  
Marc Lo¨rcher

Twin-fluid atomizers are widely used for spray-drying application. The suspension to be dried can be atomized very efficiently if the atomizer is operated at critical conditions. The three-phase flow containing solids, gas and liquid is accelerated inside the atomizer due to a pressure gradient. If the upstream pressure is sufficiently high, a maximum possible mass flow rate is achieved. This operating condition is called “critical”. The velocity of the three-phase flow and the flow pattern in the exit cross section has a major impact on the jet break-up and thus on the spray characteristics. In this experimental work the flow velocity and flow pattern inside the nozzle of the atomizer is measured. A laser-sensor is used to determine the flow velocity via cross-correlation at different operating conditions and positions inside the nozzle. The same sensor is used to measure the flow pattern by analyzing the time dependent laser light absorption of of the flow. The influence of various compositions of the suspension concerning gas volume flow rate and particle concentration on the measured velocities and flow patterns are derived. Higher gas volume flow rates increase the velocities and higher particle concentration have a decreasing influence. For a pure gas-liquid flow the obtained results are in good agreement with a theoretical model. In the exit cross-section plug flow and annular flow is observed depending on the gas volume flow fraction. The particles in the suspension have no significant influence on the flow pattern.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2077
Author(s):  
Guishan Ren ◽  
Dangke Ge ◽  
Peng Li ◽  
Xuemei Chen ◽  
Xuhui Zhang ◽  
...  

A series of experiments were conducted to investigate the flow pattern transitions and water holdup during oil–water–gas three-phase flow considering both a horizontal section and a vertical section of a transportation pipe simultaneously. The flowing media were white mineral oil, distilled water, and air. Dimensionless numbers controlling the multiphase flow were deduced to understand the scaling law of the flow process. The oil–water–gas three-phase flow was simplified as the two-phase flow of a gas and liquid mixture. Based on the experimental data, flow pattern maps were constructed in terms of the Reynolds number and the ratio of the superficial velocity of the gas to that of the liquid mixture for different Froude numbers. The original contributions of this work are that the relationship between the transient water holdup and the changes of the flow patterns in a transportation pipe with horizontal and vertical sections is established, providing a basis for judging the flow patterns in pipes in engineering practice. A dimensionless power-law correlation for the water holdup in the vertical section is presented based on the experimental data. The correlation can provide theoretical support for the design of oil and gas transport pipelines in industrial applications.


2011 ◽  
Vol 66-68 ◽  
pp. 1187-1192 ◽  
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang

Experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) to study the flow patterns for oil-gas-water three-phase flow and the pressure gradient fluctuation based on flow patterns. Using new methods of definition, 12 types of flow patterns were obtained and phase distribution characteristics of each pattern were analyzed. A new flow pattern (SW║IN) was firstly found in this work. Characteristics of the pressure gradient based on 7 flow patterns were carefully discussed. It was found that the pressure gradient increased with the increase of gas superficial velocity and oil-water mixture velocity. However, characteristics of the pressure gradient became complex with the increase of input water cut. The influence of flow structure of oil-water two-phase should be fully considered.


Sign in / Sign up

Export Citation Format

Share Document