scholarly journals ZnTi layered double hydroxides as photocatalysts for salicylic acid degradation under visible light irradiation

2020 ◽  
Vol 197 ◽  
pp. 105757 ◽  
Author(s):  
Radu G. Ciocarlan ◽  
Hao Wang ◽  
Bert Cuypers ◽  
Myrjam Mertens ◽  
Yan Wu ◽  
...  
2018 ◽  
Vol 6 (32) ◽  
pp. 15839-15852 ◽  
Author(s):  
Guanhua Zhang ◽  
Xiaofeng Zhang ◽  
Yue Meng ◽  
Xiaobo Zhou ◽  
Guoxiang Pan ◽  
...  

Both the conversion of crotonaldehyde hydrogenation and the selectivity of crotonyl alcohol are greatly improved under visible light irradiation catalyzed by Au–Ni/LDHs.


2018 ◽  
Vol 54 (96) ◽  
pp. 13587-13590 ◽  
Author(s):  
Yuxing Huang ◽  
Zhuo Xin ◽  
Wenlong Yao ◽  
Qi Hu ◽  
Zhuohua Li ◽  
...  

A novel recyclable composite catalyst (Fe3O4-RB/LDH) formed by stable self-assembly of Fe3O4 NPs, rose bengal, and layered double hydroxides can catalyze various organic transformations with high efficiency in water under visible light irradiation.


2019 ◽  
Vol 481 ◽  
pp. 1335-1343 ◽  
Author(s):  
Xi Chen ◽  
Wenwen Zhang ◽  
Lixiang Zhang ◽  
Luping Feng ◽  
Jiangwei Wen ◽  
...  

2014 ◽  
Vol 925 ◽  
pp. 130-134 ◽  
Author(s):  
Shu Chin Lee ◽  
Hendrik O. Lintang ◽  
Salasiah Endud ◽  
Leny Yuliati

In this work, we reported the photocatalytic activities of carbon nitride (CN) materials for removal of various aromatic organic pollutants under visible light irradiation. Both bulk carbon nitride (BCN) and mesoporous carbon nitride (MCN) were prepared similarly through thermal polymerization of urea precursor, except that the mesoporous structure was generated onto the MCN via hard template approach using silica nanoparticles. Successful preparations of both BCN and MCN were suggested from various characterization techniques using XRD, DR UV-Visible spectroscopy, nitrogen adsorption-desorption analyzer, and TEM. The prepared BCN and MCN were tested for removal of aromatic organic pollutants, which were benzene, phenol and salicylic acid under visible light irradiation. Both BCN and MCN did not exhibit any photocatalytic activities in the removal of benzene, but active for removals of phenol and salicylic acid. The structure stability and the presence of electron donating group on the organic pollutants were proposed to affect the photocatalytic removal reactions. Owing to the larger BET specific surface area, MCN showed much higher photocatalytic activity than the BCN for removal of phenol and salicylic acid.


Author(s):  
Snehamol Mathew ◽  
Priyanka Ganguly ◽  
Stephen Rhatigan ◽  
Vignesh Kumaravel ◽  
Ciara Byrne ◽  
...  

Indoor surface contamination by microbes is a major public health concern. A damp environment is one potential sources for microbe proliferation. Smart photocatalytic coatings on building surfaces using semiconductors like titania (TiO<sub>2</sub>) can effectively curb this growing threat.<b> </b>Metal-doped titania in anatase phase has been proved as a promising candidate for energy and environmental applications. In this present work, the antimicrobial efficacy of copper (Cu) doped TiO<sub>2 </sub>(Cu-TiO<sub>2</sub>) was evaluated against <i>Escherichia coli</i> (Gram-negative) and <i>Staphylococcus aureus</i> (Gram-positive) under visible light irradiation. Doping of a minute fraction of Cu (0.5 mol %) in TiO<sub>2 </sub>was carried out <i>via</i> sol-gel technique. Cu-TiO<sub>2</sub> further calcined at various temperatures (in the range of 500 °C – 700 °C) to evaluate the thermal stability of TiO<sub>2</sub> anatase phase. The physico-chemical properties of the samples were characterised through X-ray diffraction (XRD), Raman spectroscopy, X-ray photo-electron spectroscopy (XPS) and UV-visible spectroscopy techniques. XRD results revealed that the anatase phase of TiO<sub>2</sub> was maintained well, up to 650 °C, by the Cu dopant. UV-DRS results suggested that the visible light absorption property of Cu-TiO<sub>2 </sub>was enhanced and the band gap is reduced to 2.8 eV. Density functional theory (DFT) studies emphasises the introduction of Cu<sup>+</sup> and Cu<sup>2+</sup> ions by replacing Ti<sup>4+</sup> ions in the TiO<sub>2</sub> lattice, creating oxygen vacancies. These further promoted the photocatalytic efficiency. A significantly high bacterial inactivation (99.9%) was attained in 30 mins of visible light irradiation by Cu-TiO<sub>2</sub>.


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


Sign in / Sign up

Export Citation Format

Share Document