Detection of three common G6PD gene mutations in Chinese individuals by probe melting curves

2005 ◽  
Vol 38 (4) ◽  
pp. 390-394 ◽  
Author(s):  
De-Tai Zhang ◽  
Li-Hua Hu ◽  
Yu-Zheng Yang
2019 ◽  
Vol 08 (02) ◽  
pp. 047-053 ◽  
Author(s):  
Poonam Tripathi ◽  
Sarita Agarwal ◽  
Srinivasan Muthuswamy

AbstractGlucose-6-phosphate dehydrogenase (G6PD) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. It affects approximately 400 million people worldwide. The purpose of this study was to detect the prevalence of G6PD deficiency and G6PD gene mutations in the hospital-based settings in patients referred for suspected G6PD deficiency. A qualitative fluorescent spot test and dichlorophenol-indolphenol (DCIP) test were performed. G6PD-deficient, positive samples were further processed for mutation analysis by Sanger sequencing. Out of 1,069 cases, 95 (8.8%) were detected as G6PD deficient (by DCIP test) and were sent for molecular analysis. The G6PD Mediterranean mutation (563C > T) is the most common variant among G6PD-deficient individuals followed by the Coimbra (592C→T) and Orissa (131C→G) variants. We concluded that all symptomatic patients (anemic or jaundiced) should be investigated for G6PD deficiency. Our findings will inform our population screening approach and help provide better management for G6PD-deficient patients.


1999 ◽  
Vol 49 (3) ◽  
pp. 133-138 ◽  
Author(s):  
Chuan S. Du ◽  
Xiaoqin Ren ◽  
Luming Chen ◽  
Weiying Jiang ◽  
Yongshu He ◽  
...  

2002 ◽  
Vol 116 (3) ◽  
pp. 671-672 ◽  
Author(s):  
Sridevi Sukumar ◽  
Roshan Colah ◽  
Dipika Mohanty

2012 ◽  
Vol 40 (4) ◽  
pp. 3073-3082 ◽  
Author(s):  
Meichen Pan ◽  
Min Lin ◽  
Lin Yang ◽  
Jiaoren Wu ◽  
Xiaofen Zhan ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Eugenia Lo ◽  
Daibin Zhong ◽  
Beka Raya ◽  
Kareen Pestana ◽  
Cristian Koepfli ◽  
...  

Abstract Background G6PD enzyme deficiency is a common enzymatic X-linked disorder. Deficiency of the G6PD enzyme can cause free radical-mediated oxidative damage to red blood cells, leading to premature haemolysis. Treatment of Plasmodium vivax malaria with primaquine poses a potential risk of mild to severe acute haemolytic anaemia in G6PD deficient people. In this study, the prevalence and distribution of G6PD mutations were investigated across broad areas of Ethiopia, and tested the association between G6PD genotype and phenotype with the goal to provide additional information relevant to the use of primaquine in malaria treatment. Methods This study examined G6PD mutations in exons 3–11 for 344 febrile patient samples collected from seven sites across Ethiopia. In addition, the G6PD enzyme level of 400 febrile patient samples from Southwestern Ethiopia was determined by the CareStart™ biosensor. The association between G6PD phenotype and genotype was examined by Fisher exact test on a subset of 184 samples. Results Mutations were observed at three positions of the G6PD gene. The most common G6PD mutation across all sites was A376G, which was detected in 21 of 344 (6.1%) febrile patients. Thirteen of them were homozygous and eight were heterozygous for this mutation. The G267+119C/T mutation was found in 4 (1.2%) individuals in South Ethiopia, but absent in other sites. The G1116A mutation was also found in 4 (1.2%) individuals from East and South Ethiopia. For the 400 samples in the south, 17 (4.25%) were shown to be G6PD-deficient. G6PD enzyme level was not significantly different by age or gender. Among a subset of 202 febrile patients who were diagnosed with malaria, 11 (5.45%) were G6PD-deficient. These 11 infected samples were diagnosed with Plasmodium vivax by microscopy. Parasitaemia was not significantly different between the G6PD-deficient and G6PD-normal infections. Conclusions The prevalence of G6PD deficiency is modest among febrile patients in Ethiopia. G6PD deficiency testing is thus recommended before administrating primaquine for radical cure of P. vivax infected patients. The present study did not indicate a significant association between G6PD gene mutations and enzyme levels.


2021 ◽  
Vol 55 (6) ◽  
pp. 761-772

Background/Aims: Defects in the Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme enhance cellular oxidative damage, thus impairing erythrocytes and radically shortening their lifespan. We aimed to study programmed erythrocyte cell death in G6PD-deficient patients, describe the molecular genetics basis of G6PD and investigate phenotype-genotype correlations. Methods: We explored eryptosis using the annexin V-binding assay, taken as an indicator of PS exposure at the erythrocyte surface. We assessed reactive oxygen species (ROS) production, intracellular calcium concentrations and ceramide formation at the cell surface. Prior to and following treatments, cells were analyzed by flow cytometry. Finally, we explored G6PD gene mutations through PCR-Sanger sequencing. Results: Before stimulation, PS-exposing erythrocytes were significantly higher in G6PD-deficient patients than in healthy volunteers. This was paralleled by a significant increase in reactive oxygen species production, suggesting that oxidative stress is the main trigger of PS exposure in G6PDdeficient erythrocytes. Five previously described mutations were detected in our patients. Two genotypes correlated with a significantly higher percentage of PS-exposing cells. Conclusion: Our study uncovers a novel effect detected in G6PD-deficient erythrocytes which is cell membrane scrambling with PS translocation to the erythrocyte surface. Our findings shed a light on the mechanisms of premature erythrocyte clearance in G6PD deficiency.


2015 ◽  
Vol 37 (6) ◽  
pp. 739-745 ◽  
Author(s):  
L. Zhang ◽  
Y. Yang ◽  
R. Liu ◽  
Q. Li ◽  
F. Yang ◽  
...  

2007 ◽  
Vol 53 (12) ◽  
pp. 2211-2214 ◽  
Author(s):  
Andrew D Laurie ◽  
Mark P Smith ◽  
Peter M George

Abstract Background: Single base-pair substitution mutations in the gene for coagulation factor VIII, procoagulant component (hemophilia A) (F8) account for approximately 50% of severe cases of hemophilia A (HA), and almost all moderate or mild cases. Because F8 is a large gene, mutation screening using denaturing HPLC or DNA sequencing is time-consuming and expensive. Methods: We evaluated high-resolution melting analysis as an option for screening for F8 gene mutations. The melting curves of amplicons heterozygous for known F8 gene mutations were compared with melting curves of the corresponding normal amplicons to assess whether melting analysis could detect these variants. We examined 2 platforms, the Roche LightCycler 480 (LC480) and the Idaho Technology LightScanner. Results: On both instruments, 18 (90%) of the 20 F8 gene variants we examined were resolved by melting analysis. For the other 2 mutations, the melting curves of the heterozygous amplicons were similar to the corresponding normal amplicons, suggesting these variants may not be detected by this approach in a mutation-scanning screen. Conclusion: High-resolution melting analysis is an appealing technology for F8 gene screening. It is rapid and quickly identifies mutations in the majority of HA patients; samples in which no mutation is detected require further testing by DNA sequencing. The LC480 and LightScanner platforms performed similarly.


Sign in / Sign up

Export Citation Format

Share Document