Effect of glenoid component inclination on its fixation and humeral head subluxation in total shoulder arthroplasty

2004 ◽  
Vol 19 (10) ◽  
pp. 1000-1008 ◽  
Author(s):  
R. Oosterom ◽  
P.M. Rozing ◽  
H.E.N. Bersee
2021 ◽  
Vol 10 (24) ◽  
pp. 5773
Author(s):  
Maciej J. K. Simon ◽  
Helen Crofts ◽  
Treny Sasyniuk ◽  
Kayla Johnston ◽  
Derek Plausinis ◽  
...  

Background: Malpositioning of the glenoid component in total shoulder arthroplasty (TSA) remains the primary source of loosening. The purpose of this study is firstly, to quantify postoperative glenoid component position in patients having a TSA and secondly, to explore whether glenoid component radiolucency is associated with glenoid position, clinical outcomes and patient-reported measures in the short-term (two year) follow-up period. Methods: This study was a sub-study of a larger clinical trial that included patients who underwent a TSA and who were randomized into two different glenoid types with a minimum two-year follow-up period. Post-operative radiographic assessments (six weeks and two years) were used to measure glenoid component position (version, inclination, offset) and humeral head centering anterior–posterior (AP) and superior–inferior (SI), and to assess glenoid component radiolucent scoring (modified Lazarus). Pre-operative X-rays were used to measure glenoid version, inclination and Walch classification. Patient-reported measures (PROMs) included the EQ-5D health slider and the Western Ontario Osteoarthritis (WOOS) and American Shoulder and Elbow Surgeons (ASES) score and were captured at baseline and two years postoperative. Clinical outcomes including range of motion and complications were also documented. Statistical analysis included t-tests and regression modeling. Results: Ninety-one patients with an average age of 69.9 ± 6.2 years were included in this study. Glenoid component position improved significantly in version (−19.4 ± 8.6° to −17.7 ± 8.5°; p < 0.045) and inclination (11.5 ± 7.1° to 5.9 ± 6.3°; p < 0.00001) from preoperative to six weeks postoperative. Glenoid component offset in SI and humeral head centering in AP remained unchanged throughout the follow-up. Radiolucency (Lazarus classification) was recorded in 21 cases (17.3%) with a Lazarus score of 1 (15 cases) and 2 (6 cases). The EQ-5D health slider, WOOS and ASES, and ROM confirmed continuous improvements from the preoperative scores to the two-year follow-up (p < 0.05). Regression models showed no correlation between glenoid component radiolucency at two years and the postoperative week six glenoid component position; however, female gender was a significant variable. Conclusion: Glenoid component changes from its original native glenoid were observed following TSA. Glenoid inclination was improved more than version from baseline, and the humeral head remained well-centered in AP and SI at two years. Radiolucency of the glenoid at two years is not negatively associated with PROMs or component position; however, female gender was identified as a significant predictor and warrants further investigation. Complications are not associated with glenoid position or radiolucency, but longer-term follow-up is required.


2019 ◽  
Vol 12 (1_suppl) ◽  
pp. 40-52
Author(s):  
Lorenzo Banci ◽  
Alessio Meoli ◽  
Martin Hintner ◽  
Hans Rudolf Bloch

Background Glenoid component failures still represent the most common complication in total shoulder arthroplasty. These failures depend on several factors, including ultra-high molecular weight polyethylene (UHMWPE) wear. One reason for UHMWPE wear in total shoulder arthroplasty may be the current use of a spherical prosthetic humeral head against a radially mismatched UHMWPE glenoid component, which leads to reduced glenohumeral translations, glenoid edge loading and high translational forces during shoulder motions. The aim of this study was to assess the in vitro wear of an anatomic total shoulder prosthesis with non-spherical non-conforming bearings with inverted conventional materials. Methods The wear of a vitamin E-blended UHMWPE non-spherical humeral head articulating against a non-conforming titanium-niobium nitride (TiNbN)-coated metallic glenoid was tested using a joint simulator. The wear test was performed by applying a constant load of 756 N with angular motions and translations. Results After 2.5 million cycles, the mean wear rate of the humeral head was 0.28 ± standard deviation (SD) 0.45 mg/million cycles. Conclusion The low wear rate of the vitamin E UHMWPE humeral head supports the use of non-spherical non-conforming bearings with inverted conventional materials in anatomic total shoulder arthroplasty.


2019 ◽  
Vol 3 ◽  
pp. 247154921987035
Author(s):  
Lisa GM Friedman ◽  
Grant E Garrigues

The B2 glenoid is defined by Walch et al. as a glenoid that is biconcave with posterior erosion accompanied by posterior humeral head subluxation. This creates unique challenges for the treating orthopedic surgeon. Bone loss, excessive retroversion, and posterior subluxation make anatomic shoulder arthroplasty in this setting fraught with increased complications, including instability, glenoid component loosening, and poor clinical outcomes. Many techniques have been devised to treat the arthritic shoulder with a B2 glenoid, including hemiarthroplasty, total shoulder arthroplasty using eccentric reaming, bone grafting and custom implantation, and reverse total shoulder arthroplasty. In this review, we will focus on anatomic total shoulder arthroplasty using augmented glenoid implants to treat the B2 glenoid. Indications, clinical results, and basic science analyses of augmented anatomic glenoids are also discussed.


Author(s):  
Lukas N. Muench ◽  
Cameron Kia ◽  
Matthew Murphey ◽  
Elifho Obopilwe ◽  
Mark P. Cote ◽  
...  

Abstract Introduction Elliptical-shaped humeral head prostheses have recently been proposed to reflect a more anatomic shoulder replacement. However, its subsequent effect on micro-motion of the glenoid component is still not understood. Materials and methods Six fresh-frozen, cadaveric shoulders (mean age: 62.7 ± 9.2 years) were used for the study. Each specimen underwent total shoulder arthroplasty using an anatomic stemless implant. At 15°, 30°, 45° and 60° of glenohumeral abduction, 50° of internal and external rotations in the axial plane were alternatingly applied to the humerus with both an elliptical and spherical humeral head design. Glenohumeral translation was assessed by means of a 3-dimensional digitizer. Micro-motion of the glenoid component was evaluated using four high-resolution differential variable reluctance transducer strain gauges, placed at the anterior, posterior, superior, and inferior aspect of the glenoid component. Results The elliptical head design showed significantly more micro-motion in total and at the superior aspect of glenoid component during external rotation at 15° (total: P = 0.004; superior: P = 0.004) and 30° (total: P = 0.045; superior: P = 0.033) of abduction when compared to the spherical design. However, during internal rotation, elliptical and spherical heads showed similar amounts of micro-motion at the glenoid component at all tested abduction angles. When looking at glenohumeral translation, elliptical and spherical heads showed similar anteroposterior and superoinferior translation as well as compound motion during external rotation at all tested abduction angles. During internal rotation, the elliptical design resulted in significantly more anteroposterior translation and compound motion at all abduction angles when compared to the spherical design (P < 0.05). Conclusion In the setting of total shoulder arthroplasty, the elliptical head design demonstrated greater glenohumeral translation and micro-motion at the glenoid component during axial rotation when compared to the spherical design, potentially increasing the risk for glenoid loosening in the long term. Level of evidence Controlled Laboratory Study


2013 ◽  
Vol 95 (24) ◽  
pp. 2205-2212 ◽  
Author(s):  
Anastasios Papadonikolakis ◽  
Moni Blazej Neradilek ◽  
Frederick A Matsen

2009 ◽  
Vol 18 (4) ◽  
pp. 505-510 ◽  
Author(s):  
Christian Gerber ◽  
John G. Costouros ◽  
Atul Sukthankar ◽  
Sandro F. Fucentese

2018 ◽  
Vol 11 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Alessandro Castagna ◽  
Raffaele Garofalo

Anatomic total shoulder arthroplasty (TSR) has been shown to generate good to excellent results for patients with osteoarthritis and a functioning rotator cuff. Many studies have reported that the glenoid component loosening and failure remain the most common long-term complication of total shoulder arthroplasty. The approach to glenoid component is critical because a surgeon should consider patient-specific anatomy, preserving bone stock and joint line restoration, for a good and durable shoulder function. Over the years, different glenoid design and materials have been tried in various configurations. These include cemented polyethylene, uncemented metal-backed and hybrid implants. Although advances in biomechanics, design and tribology have improved our understanding of the glenoid, the journey of the glenoid component in anatomic total shoulder arthroplasty has not yet reached its final destination. This article attempts to describe the evolution of the glenoid component in anatomic TSR and current practice.


Sign in / Sign up

Export Citation Format

Share Document