Experimental muscle pain of the vastus medialis reduces knee joint extensor torque and alters quadriceps muscle contributions as revealed through musculoskeletal modeling

2019 ◽  
Vol 67 ◽  
pp. 27-33
Author(s):  
Teresa E. Flaxman ◽  
Mohammad S. Shourijeh ◽  
Tine Alkjær ◽  
Michael R. Krogsgaard ◽  
Erik B. Simonsen ◽  
...  
2007 ◽  
Vol 103 (1) ◽  
pp. 132-139 ◽  
Author(s):  
Marius Henriksen ◽  
Tine Alkjær ◽  
Hans Lund ◽  
Erik B. Simonsen ◽  
Thomas Graven-Nielsen ◽  
...  

Pain is a cardinal symptom in musculoskeletal diseases involving the knee joint, and aberrant movement patterns and motor control strategies are often present in these patients. However, the underlying neuromuscular mechanisms linking pain to movement and motor control are unclear. To investigate the functional significance of muscle pain on knee joint control during walking, three-dimensional gait analyses were performed before, during, and after experimentally induced muscle pain by means of intramuscular injections of hypertonic saline (5.8%) into vastus medialis (VM) muscle of 20 healthy subjects. Isotonic saline (0.9%) was used as control. Surface electromyography (EMG) recordings of VM, vastus lateralis (VL), biceps femoris, and semitendinosus muscles were synchronized with the gait analyses. During experimental muscle pain, the loading response phase peak knee extensor moments were attenuated, and EMG activity in the VM and VL muscles was reduced. Compressive forces, adduction moments, knee joint kinematics, and hamstring EMG activity were unaffected by pain. Interestingly, the observed changes persisted when the pain had vanished. The results demonstrate that muscle pain modulated the function of the quadriceps muscle, resulting in impaired knee joint control and joint instability during walking. The changes are similar to those observed in patients with knee pain. The loss of joint control during and after pain may leave the knee joint prone to injury and potentially participate in the chronicity of musculoskeletal problems, and it may have clinically important implications for rehabilitation and training of patients with knee pain of musculoskeletal origin.


Author(s):  
Paul W Hodges ◽  
Jane Butler ◽  
Kylie Tucker ◽  
Christopher W. MacDonell ◽  
Peter Poortvliet ◽  
...  

1998 ◽  
Vol 7 (3) ◽  
pp. 182-196 ◽  
Author(s):  
Ronald V. Croce ◽  
John P. Miller ◽  
Robert Confessore ◽  
James C. Vailas

The purpose of this study was to examine coactivation patterns of the lateral and medial quadriceps and the lateral and medial hamstrings during low- and moderate-speed isokinetic movements. Twelve female athletes performed isokinetic knee assessments at 60 and 180°/s. Root mean square electromyographic (rmsEMG) activity and the median frequency of the EMG (mfEMG) were determined by placing bipolar surface electrodes on the vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and medial hamstrings (MH). Results of rmsEMG indicated that the VM showed almost twice the coactivation of the VL (p< .05), and that the BF showed almost four times the coactivation of the MH (p <.05). Finally, differences were noted in the mfEMG (p< .05), with the VM displaying different recruitment patterns at 180°/s as an agonist compared to that as an antagonist. Results indicated that when acting as antagonists, the VM and BE display the greatest EMG patterns during isokinetic knee joint movement.


2021 ◽  
Vol 11 (6) ◽  
pp. 1780-1788
Author(s):  
Habaxi Kaken ◽  
Shanshan Wang ◽  
Wei Zhao ◽  
Baoerjiang Asihaer ◽  
Li Wang

This article studies the effects of arthroscopic imaging treatment and clinical rehabilitation of knee sports injuries. Arthroscopy was used to perform meniscus trimming and resection for 40 patients with knee sports injuries. The ages of the patients ranged from 20 to 60 years old. All patients received routine rehabilitation training such as continuous passive motion of the knee joint, biofeedback of the lower limbs, and air pressure therapy of the lower limbs. In addition, the control group was given muscle strength training, and the training began after the patients received the quadriceps muscle strength test. The removal of the joint cavity and the joint debridement has achieved satisfactory treatment results. In the experiment, the test cases were divided into two groups, and the sensor test platform was used for signal collection. Normal activities can be resumed 2 weeks after the operation. After a follow-up of 6 to 24 months, the knee joint pain disappeared, the joint was free of swelling, and the knee function was normal up to 93%. Arthroscopic reconstruction of the anterior and posterior cruciate ligament joint repair/reconstruction of the medial and posterolateral ligament knots is safe and feasible for the treatment of multiple ligament injuries of the knee joint. It has the advantages of less trauma and quick recovery. Early postoperative systemic and standardized rehabilitation exercises can obtain good knee joint function.


Pain ◽  
2008 ◽  
Vol 140 (3) ◽  
pp. 465-471 ◽  
Author(s):  
Lars Arendt-Nielsen ◽  
Kathleen A. Sluka ◽  
Hong Ling Nie

2011 ◽  
Vol 12 (8) ◽  
pp. 911-919 ◽  
Author(s):  
Rogério Pessoto Hirata ◽  
Ulysses Fernandes Ervilha ◽  
Lars Arendt-Nielsen ◽  
Thomas Graven-Nielsen

2011 ◽  
Vol 111 (3) ◽  
pp. 743-750 ◽  
Author(s):  
Serajul I. Khan ◽  
Chris J. McNeil ◽  
Simon C. Gandevia ◽  
Janet L. Taylor

Muscle pain has widespread effects on motor performance, but the effect of pain on voluntary activation, which is the level of neural drive to contracting muscle, is not known. To determine whether induced muscle pain reduces voluntary activation during maximal voluntary contractions, voluntary activation of elbow flexors was assessed with both motor-point stimulation and transcranial magnetic stimulation over the motor cortex. In addition, we performed a psychophysical experiment to investigate the effect of induced muscle pain across a wide range of submaximal efforts (5–75% maximum). In all studies, elbow flexion torque was recorded before, during, and after experimental muscle pain by injection of 1 ml of 5% hypertonic saline into biceps. Injection of hypertonic saline evoked deep pain in the muscle (pain rating ∼5 on a scale from 0 to 10). Experimental muscle pain caused a small (∼5%) but significant reduction of maximal voluntary torque in the motor-point and motor cortical studies ( P < 0.001 and P = 0.045, respectively; n = 7). By contrast, experimental muscle pain had no significant effect on voluntary activation when assessed with motor-point and motor cortical stimulation although voluntary activation tested with motor-point stimulation was reduced by ∼2% in contractions after pain had resolved ( P = 0.003). Furthermore, induced muscle pain had no significant effect on torque output during submaximal efforts ( P > 0.05; n = 6), which suggests that muscle pain did not alter the relationship between the sense of effort and production of voluntary torque. Hence, the present study suggests that transient experimental muscle pain in biceps brachii has a limited effect on central motor pathways.


Sign in / Sign up

Export Citation Format

Share Document